# Implement Low Pass Filter in Python

A low pass filter is a term that is among the basics of signal processing and is used quite often to filter signals to get more accurate results.

This tutorial will discuss the low-pass filter and how to create and implement it in Python.

A low-pass filter is utilized to pass a signal that has a frequency lower than the cut-off frequency, which holds a certain value specified by the user. All the signals with frequencies more than the cut-off frequency enervated.

## Use `Scipy`

to Create a Low-Pass Butterworth Filter in Python

In Python, we can utilize functions from the `SciPy`

library to create a low-pass filter. `SciPy`

, an abbreviation for Scientific Python, is a library that is utilized for supplying functions that carry out signal processing, optimization, and statistics. This library also uses the `NumPy`

library underneath.

There are a couple of low-pass filters that exist in the real world. However, we will create a Butterworth low-pass filter in Python, as it has a maximally flat frequency, meaning no ripples in the passband. This makes it one of the most popular and used low-pass filters.

To successfully implement this method in Python, we will first need to import `NumPy`

, `SciPy`

, and `matplotlib`

modules to the python code.

The following code uses the `SciPy`

module to create a low-pass Butterworth filter in Python.

```
import numpy as np
from scipy.signal import butter, lfilter, freqz
import matplotlib.pyplot as plt
def butter_lowpass(cutoff, fs, order=5):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = butter(order, normal_cutoff, btype='low', analog=False)
return b, a
def butter_lowpass_filter(data, cutoff, fs, order=5):
b, a = butter_lowpass(cutoff, fs, order=order)
y = lfilter(b, a, data)
return y
# Setting standard filter requirements.
order = 6
fs = 30.0
cutoff = 3.667
b, a = butter_lowpass(cutoff, fs, order)
# Plotting the frequency response.
w, h = freqz(b, a, worN=8000)
plt.subplot(2, 1, 1)
plt.plot(0.5*fs*w/np.pi, np.abs(h), 'b')
plt.plot(cutoff, 0.5*np.sqrt(2), 'ko')
plt.axvline(cutoff, color='k')
plt.xlim(0, 0.5*fs)
plt.title("Lowpass Filter Frequency Response")
plt.xlabel('Frequency [Hz]')
plt.grid()
# Creating the data for filteration
T = 5.0 # value taken in seconds
n = int(T * fs) # indicates total samples
t = np.linspace(0, T, n, endpoint=False)
data = np.sin(1.2*2*np.pi*t) + 1.5*np.cos(9*2*np.pi*t) + 0.5*np.sin(12.0*2*np.pi*t)
# Filtering and plotting
y = butter_lowpass_filter(data, cutoff, fs, order)
plt.subplot(2, 1, 2)
plt.plot(t, data, 'b-', label='data')
plt.plot(t, y, 'g-', linewidth=2, label='filtered data')
plt.xlabel('Time [sec]')
plt.grid()
plt.legend()
plt.subplots_adjust(hspace=0.35)
plt.show()
```