

Patterns Of Human Error
by Walter Bright

digitalmars.com

“It can only be attributable to human error.”

– Hal 9000

photo from 2001: A Space Odyssey

Eliminating Human Error

● Look at lists of found errors
● See if there is a pattern to them
● Redesign so that pattern becomes impossible

● Human error is out of the loop
● No need to train to not make those mistakes
● No need for QA to look for those mistakes
● The AE35 unit would never have failed

“A clever person solves a problem. A wise person avoids it.” --Einstein

4 Bolt Mounting Pattern

Offset Hole

Principles

● Easy to get it right
● Hard to get it wrong
● When it looks right, it is right
● When it looks wrong, it is wrong
● Symmetry is not always the best design

Typical Car Battery

A Sea of Wrong

● Battery can be installed in two orientations
● Cables are long enough to connect to either

post
● Cable connectors fit on either post
● Cables are not marked, not color coded
● Battery + and – markings are hard to see

Does This Matter?
Let's find out!

626,000 Results

"Long story short, my OEM battery installs one way and my aftermarket installs
the optisite direction where you would have to turn it around in order to install the
aftermarket. Well, you can see where this is gonna lead too. I Went back to an
OEM battery and didnt even look at the positive/negetive signs. I just installed it
the same way the aftermarket sat in there....I saw a few sparks and that threw
a red flag so I checked it and realized that it was reverses. Installed it the right
way and now I have no power at all. Nothing lights up."

http://www.mnsportcompacts.net/forum/showthread.php?61288-
Anyone-installed-a-Car-battery-the-wrong-way-before

http://www.mnsportcompacts.net/forum/showthread.php?61288-

Better Battery Design

How could this be
improved on?

Joint Strike Fighter
C++ Coding Standard

AV Rule 14: Literal suffixes shall use uppercase rather than lowercase letters.

const int64 fs_frame_rate = 64l; // Wrong! Looks too much like 641
const int64 fs_frame_rate = 64L; // Okay

http://www2.research.att.com/~bs/JSF-AV-rules.pdf

Simple fix: make l suffix illegal. No more possibility of this error. End of story.

I Know What You're Thinking, Punk

Was that 5 zeros,
or 6?

int i = 1000000;

Do you feel lucky?

photo from Magnum Force

We Doan Need No Steenkin' Luck

int i = 1_000_000;

Code that looks right should be right.

This particular improvement, though trivial, has been
a much liked and appreciated one.

What Should This Do?
What Does It Do?

 a < b < c

Most Would Expect

a < b && b < c

And that would happen in Python, but not in C. In C it is:

 ((a < b) ? 1 : 0) < c

Which pretty much nobody wants

Ways To Fix It

● Make it work like Python
● But that would be a silent, unexpected result for the

off chance that someone actually intended the C
behavior
– Things like this make users very mad

● Run a third party static analysis tool
● Bah

● Fix the grammar so a<b<c won't even compile
● +1

The Old Grammar

CmpExpression:
 ShiftExpression
 CmpExpression < ShiftExpression
 CmpExpression > ShiftExpression
 CmpExpression <= ShiftExpression
 CmpExpression >= ShiftExpression

Fixed Grammar

CmpExpression:
 ShiftExpression
 ShiftExpression < ShiftExpression
 ShiftExpression > ShiftExpression
 ShiftExpression <= ShiftExpression
 ShiftExpression <= ShiftExpression

Post Mortem

● Works
● Simple & clean to implement
● Compatible with C

● No silently different results

● Can still use (a<b)<c
● Which looks intentional

● No complaints from the field

Another Grammar Issue

 a & b < c

What was meant was:

 a && (b < c)

Or:

 (a & b) < c

Which means:

 a & (b < c)

Original Grammar

AndExpression:
 CmpExpression
 AndExpression & CmpExpression

Fixed Grammar

AndAndExpression:
 OrExpression
 AndAndExpression && OrExpression
 CmpExpression
 AndAndExpression && CmpExpression

AndExpression:
 ShiftExpression
 AndExpression & ShiftExpression

Enough Tiddlywink Issues

● Let's do something real
● How about C buffer overflows?

C's Biggest Mistake

● No, not operator precedence
● Not null pointers
● Arrays are converted to pointers when passed

to a function
● Thereby losing information about the array length

void foo(T *array);
…
T array[6];
...
foo(array);

Typical Solution

void foo(size_t dim, T* array);
...
foo(sizeof(array)/sizeof(T), array);

Obviously inadequate or we wouldn't be expending vast sums
finding and fixing problems with it.

CERT – C Secure Coding Standard

● Some guidelines to follow
● List of Do's and Don'ts

● More based on hope rather than guarantee

https://www.securecoding.cert.org/confluence/display/seccode/06.+Arrays+%28ARR%29

Microsoft SAL Solution

void foo(size_t dim, __in_bcount_full(dim) T* array);
…
foo(sizeof(array)/sizeof(T), array);

D Solution – Phat Pointers

void foo(T[] array);
...
foo(array);

aka dynamic arrays, consisting of a pointer paired
with a length:

http://drdobbs.com/blogs/architecture-and-design/228701625

An Innocuous C Function

#include <stdbool.h>
#include <stdio.h>

typedef long T;

bool find(T *array, size_t dim, T t) {
 int i;
 for (i = 0; i <= dim; i++);
 {

int v = array[i];
if (v == t)
 return true;

 }
}

Common Error Patterns

#include <stdbool.h>
#include <stdio.h>

typedef long T;

bool find(T *array, size_t dim, T t) {
 int i;
 for (i = 0; i <= dim; i++);
 {

int v = array[i];
if (v == t)
 return true;

 }
}

● i should be size_t
● <= should be <
● extraneous ;
● v should be type T
● missing return

But it still compiles!

Error Patterns Eliminated

alias long T;

bool find(T[] array, T t) {
 foreach (v; array)
 {

if (v == t)
 return true;

 }
 return false;
}

● loop index is inferred
● loop termination is

inferred
● ; is not allowed as a

loop body
● type of v is inferred
● falloff with no return

value not allowed

Error Codes

● Ignored by default
● Be sure and clean up along all paths

● These are rarely 100% tested, not even close

local int gz_init(gz_statep state) {
 int ret;
 z_streamp strm = &(state->strm);
 /* allocate input and output buffers */
 state->in = malloc(state->want);
 state->out = malloc(state->want);
 if (state->in == NULL || state->out == NULL) {
 if (state->out != NULL) free(state->out);
 if (state->in != NULL) free(state->in);
 gz_error(state, Z_MEM_ERROR, "out of memory");
 return -1;
 }
 /* allocate deflate memory, set up for gzip compression */
 strm->zalloc = Z_NULL;
 strm->zfree = Z_NULL;
 strm->opaque = Z_NULL;
 ret = deflateInit2(strm, state->level, Z_DEFLATED,15+16, 8, state->strategy);
 if (ret != Z_OK) {
 free(state->in);
 gz_error(state, Z_MEM_ERROR, "out of memory");
 return -1;
 }
 state->size = state->want; /* mark state as initialized */
 /* initialize write buffer */
 strm->avail_out = state->size;
 strm->next_out = state->out;
 state->next = strm->next_out;
 return 0;
}

zlib source code

local int gz_init(gz_statep state) {
 int ret;
 z_streamp strm = &(state->strm);
 /* allocate input and output buffers */
 state->in = malloc(state->want);
 state->out = malloc(state->want);
 if (state->in == NULL || state->out == NULL) {
 if (state->out != NULL) free(state->out);
 if (state->in != NULL) free(state->in);
 gz_error(state, Z_MEM_ERROR, "out of memory");
 return -1;
 }
 /* allocate deflate memory, set up for gzip compression */
 strm->zalloc = Z_NULL;
 strm->zfree = Z_NULL;
 strm->opaque = Z_NULL;
 ret = deflateInit2(strm, state->level, Z_DEFLATED,15+16, 8, state->strategy);
 if (ret != Z_OK) {
 free(state->in); /* BUG: what about state->out ? */
 gz_error(state, Z_MEM_ERROR, "out of memory");
 return -1;
 }
 state->size = state->want; /* mark state as initialized */
 /* initialize write buffer */
 strm->avail_out = state->size;
 strm->next_out = state->out;
 state->next = strm->next_out;
 return 0;
}

zlib source code

Exception Handling

● Not ignored by default
● Even decent error messages by default
● Cleanup & recovery code tends to be simpler

local int gz_init(gz_statep state) {
 z_streamp strm = &(state->strm);

 /* allocate input and output buffers */
 state->in = malloc(state->want);
 scope (failure) free(state->in);
 state->out = malloc(state->want);
 scope (failure) free(state->out);

 /* allocate deflate memory, set up for gzip compression */
 strm->zalloc = Z_NULL;
 strm->zfree = Z_NULL;
 strm->opaque = Z_NULL;
 deflateInit2(strm, state->level, Z_DEFLATED,15+16, 8, state->strategy);

 state->size = state->want; /* mark state as initialized */

 /* initialize write buffer */
 strm->avail_out = state->size;
 strm->next_out = state->out;
 state->next = strm->next_out;
 return 0;
}

Stupid Pointer Bugs

● Endless pain
● Caused by:

● Uninitialized memory
● Out of bounds pointer arithmetic
● Mismatched malloc / free
● Breaking the type system (casts & unions)

Memory Safety Guarantees
● Java proves it's possible to design semantics so

that pointer bugs are impossible
● By eliminating those 4 features that are the source of

pointer bugs

● But that imposes some severe limitations
● Which pushes programmers back to unsafe

languages like C

● We do want those apples
● but don't like little green worms

The Wizard of Oz

Separate Code into Safe and
Unsafe

● Done at function level by marking functions or
groups of functions as
● @safe
● @system
● @trusted

● Default is @system

Safe Functions

● Are guaranteed to be memory safe
● i.e. no pointer bugs

● Not allowed:
● Calling system functions
● Pointer arithmetic
● Unsafe casts or unions
● Uninitialized memory

System Functions

● Can do anything
● For example, C's free(void*) is a system

function
● But onus is on programmer to do it right

Trusted Functions

● Form a bridge between safe and system
functions

● Safe functions can call trusted functions
● Trusted functions provide a safe interface to

system functions
● Guaranteed by the programmer of the trusted

function, not the language

Not A Magic Bullet, but...

● Greatly reduces the scope of any stupid pointer
bugs

● The vast bulk of an app should be safe code
● And hence mechanically guaranteed

● System code should only be a small part
● Making it easier to manually verify correctness

● Far better than your entire program being
uncheckable system code

Other Bug Prevention Measures

● Checkable function purity
● Immutable data structures that are “turtles all

the way down”
● Function anti-hijacking
● Default to thread local data, shared data must

be explicitly typed as shared
● Value range propagation

Coming Soon

● User defined data subtyping
● Classic example: NonNull!(T)
● Ranged numeric types: Ranged!(int,0,10)
● Validated data: Validated!(T)
● Takes place of Hungarian Notation

– http://www.joelonsoftware.com/articles/Wrong.html

Conclusion – eliminate stupid bugs

● Unreliable (subject to
human error)
● Relying on luck
● Coding standards
● Code review
● Better education
● Hire better

programmers

● Reliable
● Make errors

impossible
● Make errors hard to

write
● Make correct code

easy to write

What Patterns Of Error Affect You?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

