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Introduction
The D programming language is a general purpose systems programming language. To that end, a D program is a collection of modules that can be compiled separately to native code that is combined with libraries and compiled C code by a linker to create a native executable.
Phases of Compilation
The process of compiling is divided into multiple phases. Each phase has no dependence on subsequent phases. For example, the scanner is not perturbed by the semantic analyzer. This separation of the passes makes language tools like syntax directed editors relatively easy to produce. It also is possible to compress D source by storing it in ‘tokenized’ form.
- source character set
The source file is checked to see what character set it is, and the appropriate scanner is loaded. ASCII and UTF formats are accepted.- script line
If the first line starts with #! then the first line is ignored.- lexical analysis
The source file is divided up into a sequence of tokens. Special tokens are replaced with other tokens. SpecialTokenSequences are processed and removed.- syntax analysis
The sequence of tokens is parsed to form syntax trees.- semantic analysis
The syntax trees are traversed to declare variables, load symbol tables, assign types, and in general determine the meaning of the program.- optimization
Optimization is an optional pass that tries to rewrite the program in a semantically equivalent, but faster executing, version.- code generation
Instructions are selected from the target architecture to implement the semantics of the program. The typical result will be an object file, suitable for input to a linker.
Lexical
The lexical analysis is independent of the syntax parsing and the semantic analysis. The lexical analyzer splits the source text up into tokens. The lexical grammar describes what those tokens are. The grammar is designed to be suitable for high speed scanning, it has a minimum of special case rules, there is only one phase of translation, and to make it easy to write a correct scanner for. The tokens are readily recognizable by those familiar with C and C++.Source Text
D source text can be in one of the following formats:UTF-8 is a superset of traditional 7-bit ASCII. One of the following UTF BOMs (Byte Order Marks) can be present at the beginning of the source text:
- ASCII
- UTF-8
- UTF-16BE
- UTF-16LE
- UTF-32BE
- UTF-32LE
UTF Byte Order Marks Format BOM UTF-8 EF BB BF UTF-16BE FE FF UTF-16LE FF FE UTF-32BE 00 00 FE FF UTF-32LE FF FE 00 00 ASCII no BOMIf the source file does not start with a BOM, then the first character must be less than or equal to U0000007F.
There are no digraphs or trigraphs in D.
The source text is decoded from its source representation into Unicode Characters. The Characters are further divided into: WhiteSpace, EndOfLine, Comments, SpecialTokenSequences, Tokens, all followed by EndOfFile.
The source text is split into tokens using the maximal munch technique, i.e., the lexical analyzer tries to make the longest token it can. For example
>>
is a right shift token, not two greater than tokens. An exception to this rule is that a .. embedded inside what looks like two floating point literals, as in 1..2, is interpreted as if the .. was separated by a space from the first integer.Character Set
End of File
The source text is terminated by whichever comes first.End of Line
There is no backslash line splicing, nor are there any limits on the length of a line.White Space
Comments
Comment:
BlockComment
LineComment
NestingBlockComment
BlockComment
/* Characters */
LineComment
// Characters EndOfLine
NestingBlockComment:
/+ NestingBlockCommentCharacters +/
NestingBlockCommentCharacters:
NestingBlockCommentCharacter
NestingBlockCommentCharacter NestingBlockCommentCharacters
NestingBlockCommentCharacter:
Character
NestingBlockComment
Characters:
Character
Character CharactersD has three kinds of comments:
- Block comments can span multiple lines, but do not nest.
- Line comments terminate at the end of the line.
- Nesting block comments can span multiple lines and can nest.
The contents of strings and comments are not tokenized. Consequently, comment openings occurring within a string do not begin a comment, and string delimiters within a comment do not affect the recognition of comment closings and nested "/+" comment openings. With the exception of "/+" occurring within a "/+" comment, comment openings within a comment are ignored.
a = /+ // +/ 1; // parses as if 'a = 1;'Comments cannot be used as token concatenators, for example,
a = /+ "+/" +/ 1"; // parses as if 'a = " +/ 1";'
a = /+ /* +/ */ 3; // parses as if 'a = */ 3;'abc/**/def
is two tokens, abc and def, not one abcdef token.Tokens
Token:
Identifier
StringLiteral
CharacterLiteral
IntegerLiteral
FloatLiteral
Keyword
/
/=
.
..
...
&
&=
&&
|
|=
||
-
-=
--
+
+=
++
<
<=
<<
<<=
<>
<>=
>
>=
>>=
>>>=
>>
>>>
!
!=
!<>
!<>=
!<
!<=
!>
!>=
(
)
[
]
{
}
?
,
;
:
$
=
==
*
*=
%
%=
^
^=
~
~=
@Identifiers
Identifier:Identifiers start with a letter, _, or universal alpha, and are followed by any number of letters, _, digits, or universal alphas. Universal alphas are as defined in ISO/IEC 9899:1999(E) Appendix D. (This is the C99 Standard.) Identifiers can be arbitrarily long, and are case sensitive. Identifiers starting with __ (two underscores) are reserved.
IdentifierStart
IdentifierStart IdentifierChars
IdentifierChars:
IdentifierChar
IdentifierChar IdentifierChars
IdentifierStart:
_
Letter
UniversalAlpha
IdentifierChar:
IdentifierStart
0
NonZeroDigitString Literals
StringLiteral:
WysiwygString
AlternateWysiwygString
DoubleQuotedString
HexString
DelimitedString
TokenString
WysiwygString:
r" WysiwygCharacters " StringPostfixopt
AlternateWysiwygString:
` WysiwygCharacters ` StringPostfixopt
WysiwygCharacters:
WysiwygCharacter
WysiwygCharacter WysiwygCharacters
WysiwygCharacter:
Character
EndOfLine
DoubleQuotedString:
" DoubleQuotedCharacters " StringPostfixopt
DoubleQuotedCharacters:
DoubleQuotedCharacter
DoubleQuotedCharacter DoubleQuotedCharacters
DoubleQuotedCharacter:
Character
EscapeSequence
EndOfLine
EscapeSequence:
\'
\"
\?
\\
\a
\b
\f
\n
\r
\t
\v
\ EndOfFile
\x HexDigit HexDigit
\ OctalDigit
\ OctalDigit OctalDigit
\ OctalDigit OctalDigit OctalDigit
\u HexDigit HexDigit HexDigit HexDigit
\U HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit
NamedCharacterEntity
HexString:
x" HexStringChars " StringPostfixopt
HexStringChars:
HexStringChar
HexStringChar HexStringChars
HexStringChar:
HexDigit
WhiteSpace
EndOfLine
StringPostfix:
c
w
d
DelimitedString:
q" Delimiter WysiwygCharacters MatchingDelimiter "
TokenString:
q{ Tokens }A string literal is either a double quoted string, a wysiwyg quoted string, an escape sequence, a delimited string, a token string, or a hex string.
Wysiwyg Strings
Wysiwyg quoted strings are enclosed by r" and ". All characters between the r" and " are part of the string except for EndOfLine which is regarded as a single \n character. There are no escape sequences inside r" ":
r"hello"
r"c:\root\foo.exe"
r"ab\n" // string is 4 characters,
// 'a', 'b', '\', 'n'An alternate form of wysiwyg strings are enclosed by backquotes, the ` character. The ` character is not available on some keyboards and the font rendering of it is sometimes indistinguishable from the regular ' character. Since, however, the ` is rarely used, it is useful to delineate strings with " in them.
`hello`
`c:\root\foo.exe`
`ab\n` // string is 4 characters,
// 'a', 'b', '\', 'n'Double Quoted Strings
Double quoted strings are enclosed by "". Escape sequences can be embedded into them with the typical \ notation. EndOfLine is regarded as a single \n character."hello"
"c:\\root\\foo.exe"
"ab\n" // string is 3 characters,
// 'a', 'b', and a linefeed
"ab
" // string is 3 characters,
// 'a', 'b', and a linefeedHex Strings
Hex strings allow string literals to be created using hex data. The hex data need not form valid UTF characters.
x"0A" // same as "\x0A"Whitespace and newlines are ignored, so the hex data can be easily formatted. The number of hex characters must be a multiple of 2.
x"00 FBCD 32FD 0A" // same as
// "\x00\xFB\xCD\x32\xFD\x0A"Adjacent strings are concatenated with the ~ operator, or by simple juxtaposition:
"hello " ~ "world" ~ \n // forms the stringThe following are all equivalent:
// 'h','e','l','l','o',' ',
// 'w','o','r','l','d',linefeed"ab" "c"The optional StringPostfix character gives a specific type to the string, rather than it being inferred from the context. This is useful when the type cannot be unambiguously inferred, such as when overloading based on string type. The types corresponding to the postfix characters are:
r"ab" r"c"
r"a" "bc"
"a" ~ "b" ~ "c"
\x61"bc"
String Literal Postfix Characters Postfix Type c char[] w wchar[] d dchar[]"hello"c // char[]
"hello"w // wchar[]
"hello"d // dchar[]String literals are read only. Writes to string literals cannot always be detected, but cause undefined behavior.
Delimited Strings
Delimited strings use various forms of delimiters. The delimiter, whether a character or identifer, must immediately follow the " without any intervening whitespace. The terminating delimiter must immediately precede the closing " without any intervening whitespace. A nesting delimiter nests, and is one of the following characters:
Nesting Delimiters Delimiter Matching Delimiter [ ] ( ) < > { }q"(foo(xxx))" // "foo(xxx)"
q"[foo{]" // "foo{"If the delimiter is an identifier, the identifier must be immediately followed by a newline, and the matching delimiter is the same identifier starting at the beginning of the line:
writefln(q"EOS
This
is a multi-line
heredoc string
EOS"
);The newline following the opening identifier is not part of the string, but the last newline before the closing identifier is part of the string. The closing identifier must be placed on its own line at the leftmost column.
Otherwise, the matching delimiter is the same as the delimiter character:
q"/foo]/" // "foo]"
q"/abc/def/" // errorToken Strings
Token strings open with the characters q{ and close with the token }. In between must be valid D tokens. The { and } tokens nest. The string is formed of all the characters between the opening and closing of the token string, including comments.
q{foo} // "foo"
q{/*}*/ } // "/*}*/ "
q{ foo(q{hello}); } // " foo(q{hello}); "
q{ @ } // error, @ is not a valid D token
q{ __TIME__ } // " __TIME__ ", i.e. it is not replaced with the time
q{ __EOF__ } // error, as __EOF__ is not a token, it's end of fileCharacter Literals
Character literals are a single character or escape sequence enclosed by single quotes, ' '.Integer Literals
IntegerLiteral:
Integer
Integer IntegerSuffix
Integer:
DecimalInteger
BinaryInteger
HexadecimalInteger
IntegerSuffix:
L
u
U
Lu
LU
uL
UL
DecimalInteger:
0
NonZeroDigit
NonZeroDigit DecimalDigits
BinaryInteger:
0b BinaryDigits
0B BinaryDigits
HexadecimalInteger:
0x HexDigits
0X HexDigits
NonZeroDigit:
1
2
3
4
5
6
7
8
9
DecimalDigits:
DecimalDigit
DecimalDigit DecimalDigits
DecimalDigit:
0
NonZeroDigit
_
BinaryDigits:
BinaryDigit
BinaryDigit BinaryDigits
BinaryDigit:
0
1
_
OctalDigits:
OctalDigit
OctalDigit OctalDigits
OctalDigit:
0
1
2
3
4
5
6
7
_
HexDigits:
HexDigit
HexDigit HexDigits
HexDigit:
DecimalDigit
a
b
c
d
e
f
A
B
C
D
E
F
_Integers can be specified in decimal, binary, octal, or hexadecimal.
Decimal integers are a sequence of decimal digits.
Binary integers are a sequence of binary digits preceded by a ‘0b’.
Hexadecimal integers are a sequence of hexadecimal digits preceded by a ‘0x’.
Integers can have embedded ‘_’ characters, which are ignored. The embedded ‘_’ are useful for formatting long literals, such as using them as a thousands separator:
123_456 // 123456
1_2_3_4_5_6_ // 123456Integers can be immediately followed by one ‘L’ or one of ‘u’ or ‘U’ or both. Note that there is no ‘l’ suffix.
The type of the integer is resolved as follows:
Decimal Literal Types Decimal Literal Type 0 .. 2_147_483_647 int 2_147_483_648 .. 9_223_372_036_854_775_807L long Decimal Literal, L Suffix Type 0L .. 9_223_372_036_854_775_807L long Decimal Literal, U Suffix Type 0U .. 4_294_967_296U uint 4_294_967_296U .. 18_446_744_073_709_551_615UL ulong Decimal Literal, UL Suffix Type 0UL .. 18_446_744_073_709_551_615UL ulong Non-Decimal Literal Type 0x0 .. 0x7FFF_FFFF int 0x8000_0000 .. 0xFFFF_FFFF uint 0x1_0000_0000 .. 0x7FFF_FFFF_FFFF_FFFF long 0x8000_0000_0000_0000 .. 0xFFFF_FFFF_FFFF_FFFF ulong Non-Decimal Literal, L Suffix Type 0x0L .. 0x7FFF_FFFF_FFFF_FFFFL long 0x8000_0000_0000_0000L .. 0xFFFF_FFFF_FFFF_FFFFL ulong Non-Decimal Literal, U Suffix Type 0x0U .. 0xFFFF_FFFFU uint 0x1_0000_0000UL .. 0xFFFF_FFFF_FFFF_FFFFUL ulong Non-Decimal Literal, UL Suffix Type 0x0UL .. 0xFFFF_FFFF_FFFF_FFFFUL ulongFloating Literals
FloatLiteral:
Float
Float Suffix
Integer ImaginarySuffix
Integer FloatSuffix ImaginarySuffix
Integer RealSuffix ImaginarySuffix
Float:
DecimalFloat
HexFloat
DecimalFloat:
LeadingDecimal .
LeadingDecimal . DecimalDigits
DecimalDigits . DecimalDigits DecimalExponent
. DecimalInteger
. DecimalInteger DecimalExponent
LeadingDecimal DecimalExponent
DecimalExponent
e DecimalDigits
E DecimalDigits
e+ DecimalDigits
E+ DecimalDigits
e- DecimalDigits
E- DecimalDigits
HexFloat:
HexPrefix HexDigits . HexDigits HexExponent
HexPrefix . HexDigits HexExponent
HexPrefix HexDigits HexExponent
HexPrefix:
0x
0X
HexExponent:
p DecimalDigits
P DecimalDigits
p+ DecimalDigits
P+ DecimalDigits
p- DecimalDigits
P- DecimalDigits
Suffix:
FloatSuffix
RealSuffix
ImaginarySuffix
FloatSuffix ImaginarySuffix
RealSuffix ImaginarySuffix
FloatSuffix:
f
F
RealSuffix:
L
ImaginarySuffix:
i
LeadingDecimal:
DecimalInteger
0 DecimalDigitsFloats can be in decimal or hexadecimal format.
Hexadecimal floats are preceded with a 0x and the exponent is a p or P followed by a decimal number serving as the exponent of 2.
Floating literals can have embedded ‘_’ characters, which are ignored. The embedded ‘_’ are useful for formatting long literals to make them more readable, such as using them as a thousands separator:
123_456.567_8 // 123456.5678
1_2_3_4_5_6_._5_6_7_8 // 123456.5678
1_2_3_4_5_6_._5e-6_ // 123456.5e-6Floating literals with no suffix are of type double. Floats can be followed by one f, F, or L suffix. The f or F suffix means it is a float, and L means it is a real.
If a floating literal is followed by i, then it is an ireal (imaginary) type.
Examples:
0x1.FFFFFFFFFFFFFp1023 // double.max
0x1p-52 // double.epsilon
1.175494351e-38F // float.min
6.3i // idouble 6.3
6.3fi // ifloat 6.3
6.3Li // ireal 6.3It is an error if the literal exceeds the range of the type. It is not an error if the literal is rounded to fit into the significant digits of the type.
Complex literals are not tokens, but are assembled from real and imaginary expressions during semantic analysis:
4.5 + 6.2i // complex numberKeywords
Keywords are reserved identifiers.Keyword:
abstract
alias
align
asm
assert
auto
body
bool
break
byte
case
cast
catch
cdouble
cent
cfloat
char
class
const
continue
creal
dchar
debug
default
delegate
delete
deprecated
do
double
else
enum
export
extern
false
final
finally
float
for
foreach
foreach_reverse
function
goto
idouble
if
ifloat
immutable
import
in
inout
int
interface
invariant
ireal
is
lazy
long
macro
mixin
module
new
nothrow
null
out
override
package
pragma
private
protected
public
pure
real
ref
return
scope
shared
short
static
struct
super
switch
synchronized
template
this
throw
true
try
typedef
typeid
typeof
ubyte
ucent
uint
ulong
union
unittest
ushort
version
void
volatile
wchar
while
with
__FILE__
__LINE__
__gshared
__thread
__traitsSpecial Tokens
These tokens are replaced with other tokens according to the following table:
Special Tokens Special Token Replaced with... __DATE__ string literal of the date of compilation "mmm dd yyyy" __EOF__ sets the scanner to the end of the file __TIME__ string literal of the time of compilation "hh:mm:ss" __TIMESTAMP__ string literal of the date and time of compilation "www mmm dd hh:mm:ss yyyy" __VENDOR__ Compiler vendor string, such as "Digital Mars D" __VERSION__ Compiler version as an integer, such as 2001Special Token Sequences
SpecialTokenSequence:
# line Integer EndOfLine
# line Integer Filespec EndOfLine
Filespec:
" Characters "Special token sequences are processed by the lexical analyzer, may appear between any other tokens, and do not affect the syntax parsing.
There is currently only one special token sequence, #line.
This sets the source line number to Integer, and optionally the source file name to Filespec, beginning with the next line of source text. The source file and line number is used for printing error messages and for mapping generated code back to the source for the symbolic debugging output.
For example:
int #line 6 "foo\bar"
x; // this is now line 6 of file foo\barNote that the backslash character is not treated specially inside Filespec strings.
Modules
Module:
ModuleDeclaration DeclDefs
DeclDefs
DeclDefs:
DeclDef
DeclDef DeclDefs
DeclDef:
AttributeSpecifier
ImportDeclaration
EnumDeclaration
ClassDeclaration
InterfaceDeclaration
AggregateDeclaration
Declaration
Constructor
Destructor
UnitTest
StaticConstructor
StaticDestructor
SharedStaticConstructor
SharedStaticDestructor
ConditionalDeclaration
StaticAssert
TemplateDeclaration
TemplateMixin
MixinDeclaration
;Modules have a one-to-one correspondence with source files. The module name is the file name with the path and extension stripped off.
Modules automatically provide a namespace scope for their contents. Modules superficially resemble classes, but differ in that:
- There's only one instance of each module, and it is statically allocated.
- There is no virtual table.
- Modules do not inherit, they have no super modules, etc.
- Only one module per file.
- Module symbols can be imported.
- Modules are always compiled at global scope, and are unaffected by surrounding attributes or other modifiers.
Modules can be grouped together in hierarchies called packages.
Modules offer several guarantees:
- The order in which modules are imported does not affect the semantics.
- The semantics of a module are not affected by what imports it.
- If a module C imports modules A and B, any modifications to B will not silently change code in C that is dependent on A.
Module Declaration
The ModuleDeclaration sets the name of the module and what package it belongs to. If absent, the module name is taken to be the same name (stripped of path and extension) of the source file name.
ModuleDeclaration:
module ModuleFullyQualifiedName ;
ModuleFullyQualifiedName:
ModuleName
Packages . ModuleName
ModuleName:
Identifier
Packages:
PackageName
Packages . PackageName
PackageName:
IdentifierThe Identifiers preceding the rightmost are the Packages that the module is in. The packages correspond to directory names in the source file path. Package names cannot be keywords, hence the corresponding directory names cannot be keywords, either.
If present, the ModuleDeclaration appears syntactically first in the source file, and there can be only one per source file.
Example:
module c.stdio; // this is module stdio in the c packageBy convention, package and module names are all lower case. This is because those names have a one-to-one correspondence with the operating system's directory and file names, and many file systems are not case sensitive. All lower case package and module names will minimize problems moving projects between dissimilar file systems.
Import Declaration
Symbols from one module are made available in another module by using the ImportDeclaration:
ImportDeclaration:
import ImportList ;
static import ImportList ;
ImportList:
Import
ImportBindings
Import , ImportList
Import:
ModuleFullyQualifiedName
ModuleAliasIdentifier = ModuleFullyQualifiedName
ImportBindings:
Import : ImportBindList
ImportBindList:
ImportBind
ImportBind , ImportBindList
ImportBind:
Identifier
Identifier = Identifier
ModuleAliasIdentifier:
IdentifierThere are several forms of the ImportDeclaration, from generalized to fine-grained importing.
The order in which ImportDeclarations occur has no significance.
ModuleFullyQualifiedNames in the ImportDeclaration must be fully qualified with whatever packages they are in. They are not considered to be relative to the module that imports them.
Basic Imports
The simplest form of importing is to just list the modules being imported:
import std.stdio; // import module stdio from the std package
import foo, bar; // import modules foo and bar
void main()
{
writefln("hello!\n"); // calls std.stdio.writefln
}How basic imports work is that first a name is searched for in the current namespace. If it is not found, then it is looked for in the imports. If it is found uniquely among the imports, then that is used. If it is in more than one import, an error occurs.
module A;
void foo();
void bar();module B;
void foo();
void bar();module C;
import A;
void foo();
void test()
{ foo(); // C.foo() is called, it is found before imports are searched
bar(); // A.bar() is called, since imports are searched
}module D;
import A;
import B;
void test()
{ foo(); // error, A.foo() or B.foo() ?
A.foo(); // ok, call A.foo()
B.foo(); // ok, call B.foo()
}module E;
import A;
import B;
alias B.foo foo;
void test()
{ foo(); // call B.foo()
A.foo(); // call A.foo()
B.foo(); // call B.foo()
}Public Imports
By default, imports are private. This means that if module A imports module B, and module B imports module C, then C's names are not searched for. An import can be specifically declared public, when it will be treated as if any imports of the module with the ImportDeclaration also import the public imported modules.
module A;
void foo() { }module B;
void bar() { }module C;
import A;
public import B;
...
foo(); // call A.foo()
bar(); // calls B.bar()module D;
import C;
...
foo(); // error, foo() is undefined
bar(); // ok, calls B.bar()Static Imports
Basic imports work well for programs with relatively few modules and imports. If there are a lot of imports, name collisions can start occurring between the names in the various imported modules. One way to stop this is by using static imports. A static import requires one to use a fully qualified name to reference the module's names:
static import std.stdio;
void main()
{
writefln("hello!"); // error, writefln is undefined
std.stdio.writefln("hello!"); // ok, writefln is fully qualified
}Renamed Imports
A local name for an import can be given, through which all references to the module's symbols must be qualified with:
import io = std.stdio;
void main()
{
io.writefln("hello!"); // ok, calls std.stdio.writefln
std.stdio.writefln("hello!"); // error, std is undefined
writefln("hello!"); // error, writefln is undefined
}Renamed imports are handy when dealing with very long import names.
Selective Imports
Specific symbols can be exclusively imported from a module and bound into the current namespace:
import std.stdio : writefln, foo = writef;
void main()
{
std.stdio.writefln("hello!"); // error, std is undefined
writefln("hello!"); // ok, writefln bound into current namespace
writef("world"); // error, writef is undefined
foo("world"); // ok, calls std.stdio.writef()
fwritefln(stdout, "abc"); // error, fwritefln undefined
}static cannot be used with selective imports.
Renamed and Selective Imports
When renaming and selective importing are combined:
import io = std.stdio : foo = writefln;
void main()
{
writefln("bar"); // error, writefln is undefined
std.stdio.foo("bar"); // error, foo is bound into current namespace
std.stdio.writefln("bar"); // error, std is undefined
foo("bar"); // ok, foo is bound into current namespace,
// FQN not required
io.writefln("bar"); // ok, io=std.stdio bound the name io in
// the current namespace to refer to the entire module
io.foo("bar"); // error, foo is bound into current namespace,
// foo is not a member of ioModule Scope Operator
Sometimes, it's necessary to override the usual lexical scoping rules to access a name hidden by a local name. This is done with the global scope operator, which is a leading ‘.’:int x;The leading ‘.’ means look up the name at the module scope level.
int foo(int x)
{
if (y)
return x; // returns foo.x, not global x
else
return .x; // returns global x
}Static Construction and Destruction
Static constructors are code that gets executed to initialize a module or a class before the main() function gets called. Static destructors are code that gets executed after the main() function returns, and are normally used for releasing system resources.
There can be multiple static constructors and static destructors within one module. The static constructors are run in lexical order, the static destructors are run in reverse lexical order.
Static constructors and static destructors run on thread local data, and are run whenever threads are created or destroyed.
Shared static constructors and shared static destructors are run on global shared data, and constructors are run once on program startup and destructors are run once on program termination.
Order of Static Construction
Shared static constructors on all modules are run before any static constructors.
The order of static initialization is implicitly determined by the import declarations in each module. Each module is assumed to depend on any imported modules being statically constructed first. Other than following that rule, there is no imposed order on executing the module static constructors.
Cycles (circular dependencies) in the import declarations are allowed as long as not both of the modules contain static constructors or static destructors. Violation of this rule will result in a runtime exception.
Order of Static Construction within a Module
Within a module, the static construction occurs in the lexical order in which they appear.Order of Static Destruction
It is defined to be exactly the reverse order that static construction was performed in. Static destructors for individual modules will only be run if the corresponding static constructor successfully completed.
Shared static destructors are executed after static destructors.
Order of Unit tests
Unit tests are run in the lexical order in which they appear within a module.Mixin Declaration
The AssignExpression must evaluate at compile time to a constant string. The text contents of the string must be compilable as a valid DeclDefs, and is compiled as such.
Declarations
Declaration:
alias Decl
Decl
Decl:
StorageClasses Decl
BasicType Declarators ;
BasicType Declarator FunctionBody
AutoDeclaration
Declarators:
DeclaratorInitializer
DeclaratorInitializer , DeclaratorIdentifierList
DeclaratorInitializer:
Declarator
Declarator = Initializer
DeclaratorIdentifierList:
DeclaratorIdentifier
DeclaratorIdentifier , DeclaratorIdentifierList
DeclaratorIdentifier:
Identifier
Identifier = Initializer
BasicType:
BasicTypeX
.IdentifierList
IdentifierList
Typeof
Typeof . IdentifierList
const( type )
immutable( type )
shared( type )
inout( type )
BasicTypeX:
bool
byte
ubyte
short
ushort
int
uint
long
ulong
char
wchar
dchar
float
double
real
ifloat
idouble
ireal
cfloat
cdouble
creal
void
.IdentifierList
IdentifierList
Typeof
Typeof . IdentifierList
const( type )
immutable( type )
shared( type )
inout( type )
BasicType2:
*
[ ]
[ AssignExpression ]
[ AssignExpression .. AssignExpression ]
[ Type ]
delegate Parameters FunctionAttributesopt
function Parameters FunctionAttributesopt
Declarator:
BasicType2opt ( Declarator ) DeclaratorSuffixesopt
BasicType2opt Identifier DeclaratorSuffixesopt
DeclaratorSuffixes:
DeclaratorSuffix
DeclaratorSuffix DeclaratorSuffixes
DeclaratorSuffix:
[ ]
[ AssignExpression ]
[ Type ]
TemplateParameterListopt Parameters MemberFunctionAttributesopt Constraintopt
IdentifierList:
Identifier
Identifier . IdentifierList
TemplateInstance
TemplateInstance . IdentifierList
StorageClasses:
StorageClass
StorageClass StorageClasses
StorageClass:
abstract
auto
const
deprecated
extern
final
immutable
inout
shared
nothrow
override
pure
__gshared
Property
scope
static
synchronized
Property:
@ Identifier
Type:
BasicType
BasicType Declarator2
Declarator2:
BasicType2opt DeclaratorSuffixesopt
BasicType2opt ( Declarator2 ) DeclaratorSuffixesopt
Parameters:
( ParameterList )
( )
ParameterList:
Parameter
Parameter , ParameterList
...
Parameter:
InOutopt BasicType Declarator
InOutopt BasicType Declarator ...
InOutopt BasicType Declarator = DefaultInitializerExpression
InOutopt Type
InOutopt Type ...
InOut:
InOutX
InOut InOutX
InOutX:
auto
const
final
immutable
in
inout
lazy
out
ref
scope
shared
FunctionAttributes:
FunctionAttribute
FunctionAttribute FunctionAttributes
FunctionAttribute:
nothrow
pure
Property
MemberFunctionAttributes:
MemberFunctionAttribute
MemberFunctionAttribute MemberFunctionAttributes
MemberFunctionAttribute:
const
immutable
inout
shared
FunctionAttribute
DefaultInitializerExpression:
AssignExpression
__FILE__
__LINE__
Initializer:
VoidInitializer
NonVoidInitializer
NonVoidInitializer:
AssignExpression
ArrayInitializer
StructInitializer
ArrayInitializer:
[ ]
[ ArrayMemberInitializations ]
ArrayMemberInitializations:
ArrayMemberInitialization
ArrayMemberInitialization ,
ArrayMemberInitialization , ArrayMemberInitializations
ArrayMemberInitialization:
NonVoidInitializer
AssignExpression : NonVoidInitializer
StructInitializer:
{ }
{ StructMemberInitializers }
StructMemberInitializers:
StructMemberInitializer
StructMemberInitializer ,
StructMemberInitializer , StructMemberInitializers
StructMemberInitializer:
NonVoidInitializer
Identifier : NonVoidInitializerDeclaration Syntax
Declaration syntax generally reads right to left:
int x; // x is an int
int* x; // x is a pointer to int
int** x; // x is a pointer to a pointer to int
int[] x; // x is an array of ints
int*[] x; // x is an array of pointers to ints
int[]* x; // x is a pointer to an array of intsArrays read right to left as well:
int[3] x; // x is an array of 3 ints
int[3][5] x; // x is an array of 5 arrays of 3 ints
int[3]*[5] x; // x is an array of 5 pointers to arrays of 3 intsPointers to functions are declared using the function keyword:
int function(char) x; // x is a pointer to
// a function taking a char argument
// and returning an int
int function(char)[] x; // x is an array of
// pointers to functions
// taking a char argument
// and returning an intC-style array, function pointer and pointer to array declarations are deprecated:
int x[3]; // x is an array of 3 ints
int x[3][5]; // x is an array of 3 arrays of 5 ints
int (*x[5])[3]; // x is an array of 5 pointers to arrays of 3 ints
int (*x)(char); // x is a pointer to a function taking a char argument
// and returning an int
int (*[] x)(char); // x is an array of pointers to functions
// taking a char argument and returning an intIn a declaration declaring multiple symbols, all the declarations must be of the same type:
int x,y; // x and y are ints
int* x,y; // x and y are pointers to ints
int x,*y; // error, multiple types
int[] x,y; // x and y are arrays of ints
int x[],y; // error, multiple typesImplicit Type Inference
AutoDeclaration:
StorageClasses AutoDeclarationX ;
AutoDeclarationX:
Identifier = Initializer
AutoDeclarationX , Identifier = InitializerIf a declaration starts with a StorageClass and has a NonVoidInitializer from which the type can be inferred, the type on the declaration can be omitted.
static x = 3; // x is type int
auto y = 4u; // y is type uint
auto s = "string"; // s is type immutable(char)[]
class C { ... }
auto c = new C(); // c is a handle to an instance of class CThe NonVoidInitializer cannot contain forward references (this restriction may be removed in the future). The implicitly inferred type is statically bound to the declaration at compile time, not run time.
An ArrayLiteral is inferred to be a dynamic array type rather than a static array:
auto v = ["hello", "world"]; // type is string[], not string[2]Type Aliasing
It's sometimes convenient to use an alias for a type, such as a shorthand for typing out a long, complex type like a pointer to a function. In D, this is done with the alias declaration:
alias abc.Foo.bar myint;Aliased types are semantically identical to the types they are aliased to. The debugger cannot distinguish between them, and there is no difference as far as function overloading is concerned. For example:
alias int myint;
void foo(int x) { . }
void foo(myint m) { . } // error, multiply defined function fooAlias Declarations
A symbol can be declared as an alias of another symbol. For example:
import string;
alias string.strlen mylen;
...
int len = mylen("hello"); // actually calls string.strlen()The following alias declarations are valid:
template Foo2(T) { alias T t; }
alias Foo2!(int) t1;
alias Foo2!(int).t t2;
alias t1.t t3;
alias t2 t4;
t1.t v1; // v1 is type int
t2 v2; // v2 is type int
t3 v3; // v3 is type int
t4 v4; // v4 is type intAliased symbols are useful as a shorthand for a long qualified symbol name, or as a way to redirect references from one symbol to another:
version (Win32)
{
alias win32.foo myfoo;
}
version (linux)
{
alias linux.bar myfoo;
}Aliasing can be used to ‘import’ a symbol from an import into the current scope:
alias string.strlen strlen;Aliases can also ‘import’ a set of overloaded functions, that can be overloaded with functions in the current scope:
class A {
int foo(int a) { return 1; }
}
class B : A {
int foo( int a, uint b ) { return 2; }
}
class C : B {
int foo( int a ) { return 3; }
alias B.foo foo;
}
class D : C {
}
void test()
{
D b = new D();
int i;
i = b.foo(1, 2u); // calls B.foo
i = b.foo(1); // calls C.foo
}Note: Type aliases can sometimes look indistinguishable from alias declarations:
alias foo.bar abc; // is it a type or a symbol?The distinction is made in the semantic analysis pass.
Aliases cannot be used for expressions:
struct S { static int i; }
S s;
alias s.i a; // illegal, s.i is an expression
alias S.i b; // ok
b = 4; // sets S.i to 4Extern Declarations
Variable declarations with the storage class extern are not allocated storage within the module. They must be defined in some other object file with a matching name which is then linked in. The primary usefulness of this is to connect with global variable declarations in C files.typeof
Typeof is a way to specify a type based on the type of an expression. For example:
void func(int i) {
typeof(i) j; // j is of type int
typeof(3 + 6.0) x; // x is of type double
typeof(1)* p; // p is of type pointer to int
int[typeof(p)] a; // a is of type int[int*]
writefln("%d", typeof('c').sizeof); // prints 1
double c = cast(typeof(1.0))j; // cast j to double
}Expression is not evaluated, just the type of it is generated:
void func() {
int i = 1;
typeof(++i) j; // j is declared to be an int, i is not incremented
writefln("%d", i); // prints 1
}There are three special cases:
- typeof(this) will generate the type of what this would be in a non-static member function, even if not in a member function.
- Analogously, typeof(super) will generate the type of what super would be in a non-static member function.
- typeof(return) will, when inside a function scope, give the return type of that function.
class A { }
class B : A {
typeof(this) x; // x is declared to be a B
typeof(super) y; // y is declared to be an A
}
struct C {
typeof(this) z; // z is declared to be a C*
typeof(super) q; // error, no super struct for C
}
typeof(this) r; // error, no enclosing struct or classWhere Typeof is most useful is in writing generic template code.
Void Initializations
Normally, variables are initialized either with an explicit Initializer or are set to the default value for the type of the variable. If the Initializer is void, however, the variable is not initialized. If its value is used before it is set, undefined program behavior will result.void foo() {Therefore, one should only use void initializers as a last resort when optimizing critical code.
int x = void;
writefln(x); // will print garbage
}
Types
Basic Data Types
Basic Data Types Keyword Description Default Initializer (.init) void no type - bool boolean value false byte signed 8 bits 0 ubyte unsigned 8 bits 0 short signed 16 bits 0 ushort unsigned 16 bits 0 int signed 32 bits 0 uint unsigned 32 bits 0 long signed 64 bits 0L ulong unsigned 64 bits 0L cent signed 128 bits (reserved for future use) 0 ucent unsigned 128 bits (reserved for future use) 0 float 32 bit floating point float.nan double 64 bit floating point double.nan real largest hardware implemented floating point size (Implementation Note: 80 bits for x86 CPUs) or double size, whichever is larger real.nan ifloat imaginary float float.nan * 1.0i idouble imaginary double double.nan * 1.0i ireal imaginary real real.nan * 1.0i cfloat a complex number of two float values float.nan + float.nan * 1.0i cdouble complex double double.nan + double.nan * 1.0i creal complex real real.nan + real.nan * 1.0i char unsigned 8 bit UTF-8 0xFF wchar unsigned 16 bit UTF-16 0xFFFF dchar unsigned 32 bit UTF-32 0x0000FFFFDerived Data Types
- pointer
- array
- associative array
- function
- delegate
Strings are a special case of arrays.
User Defined Types
- alias
- enum
- struct
- union
- class
Base Types
The base type of an enum is the type it is based on:
enum E : T { ... } // T is the base type of EPointer Conversions
Casting pointers to non-pointers and vice versa is allowed in D, however, do not do this for any pointers that point to data allocated by the garbage collector.
Implicit Conversions
Implicit conversions are used to automatically convert types as required.
A enum can be implicitly converted to its base type, but going the other way requires an explicit conversion. A literal can be implicitly converted to a typedef. For example:
int i;
enum Foo { E }
Foo f;
i = f; // OK
f = i; // error
f = cast(Foo)i; // OK
f = 0; // error
f = Foo.E; // OKInteger Promotions
Integer Promotions are conversions of the following types:
Integer Promotions from to bool int byte int ubyte int short int ushort int char int wchar int dchar uintIf a enum has as a base type one of the types in the left column, it is converted to the type in the right column.
Usual Arithmetic Conversions
The usual arithmetic conversions convert operands of binary operators to a common type. The operands must already be of arithmetic types. The following rules are applied in order, looking at the base type:
- If either operand is real, the other operand is converted to real.
- Else if either operand is double, the other operand is converted to double.
- Else if either operand is float, the other operand is converted to float.
- Else the integer promotions are done on each operand, followed by:
- If both are the same type, no more conversions are done.
- If both are signed or both are unsigned, the smaller type is converted to the larger.
- If the signed type is larger than the unsigned type, the unsigned type is converted to the signed type.
- The signed type is converted to the unsigned type.
If one or both of the operand types is an enum after undergoing the above conversions, the result type is:
- If the operands are the same type, the result will be the that type.
- If one operand is an enum and the other is the base type of that enum, the result is the base type.
- If the two operands are different enums, the result is the closest base type common to both. A base type being closer means there is a shorter sequence of conversions to base type to get there from the original type.
Integer values cannot be implicitly converted to another type that cannot represent the integer bit pattern after integral promotion. For example:
ubyte u1 = cast(byte)-1; // error, -1 cannot be represented in a ubyte
ushort u2 = cast(short)-1; // error, -1 cannot be represented in a ushort
uint u3 = cast(int)-1; // ok, -1 can be represented in a uint
ulong u4 = cast(ulong)-1; // ok, -1 can be represented in a ulongFloating point types cannot be implicitly converted to integral types.
Complex floating point types cannot be implicitly converted to non-complex floating point types.
Imaginary floating point types cannot be implicitly converted to float, double, or real types. Float, double, or real types cannot be implicitly converted to imaginary floating point types.
bool
The bool type is a 1 byte size type that can only hold the value true or false. The only operators that can accept operands of type bool are: & | ^ &= |= ^= ! && || ?:. A bool value can be implicitly converted to any integral type, with false becoming 0 and true becoming 1. The numeric literals 0 and 1 can be implicitly converted to the bool values false and true, respectively. Casting an expression to bool means testing for 0 or !=0 for arithmetic types, and null or !=null for pointers or references.
Delegates
There are no pointers-to-members in D, but a more useful concept called delegates are supported. Delegates are an aggregate of two pieces of data: an object reference and a function pointer. The object reference forms the this pointer when the function is called.
Delegates are declared similarly to function pointers, except that the keyword delegate takes the place of (*), and the identifier occurs afterwards:
int function(int) fp; // fp is pointer to a function
int delegate(int) dg; // dg is a delegate to a functionThe C style syntax for declaring pointers to functions is also supported:
int (*fp)(int); // fp is pointer to a functionA delegate is initialized analogously to function pointers:
int func(int);
fp = &func; // fp points to func
class OB {
int member(int);
}
OB o;
dg = &o.member; // dg is a delegate to object o and
// member function memberDelegates cannot be initialized with static member functions or non-member functions.
Delegates are called analogously to function pointers:
fp(3); // call func(3)
dg(3); // call o.member(3)
Properties
Every type and expression has properties that can be queried:
Property Examples Expression Value int.sizeof yields 4 float.nan yields the floating point nan (Not A Number) value (float).nan yields the floating point nan value (3).sizeof yields 4 (because 3 is an int) 2.sizeof syntax error, since "2." is a floating point number int.init default initializer for int's int.mangleof yields the string "i" int.stringof yields the string "int" (1+2).stringof yields the string "1 + 2"
Properties for All Types Property Description .init initializer .sizeof size in bytes (equivalent to C's sizeof(type)) .alignof alignment size .mangleof string representing the ‘mangled’ representation of the type .stringof string representing the source representation of the type
Properties for Integral Types Property Description .init initializer (0) .max maximum value .min minimum value
Properties for Floating Point Types Property Description .init initializer (NaN) .infinity infinity value .nan NaN value .dig number of decimal digits of precision .epsilon smallest increment to the value 1 .mant_dig number of bits in mantissa .max_10_exp maximum int value such that 10max_10_exp is representable .max_exp maximum int value such that 2max_exp-1 is representable .min_10_exp minimum int value such that 10min_10_exp is representable as a normalized value .min_exp minimum int value such that 2min_exp-1 is representable as a normalized value .max largest representable value that's not infinity .min_normal smallest representable normalized value that's not 0 .re real part .im imaginary part
Properties for Class Types Property Description .classinfo Information about the dynamic type of the class.init Property
.init produces a constant expression that is the default initializer. If applied to a type, it is the default initializer for that type. If applied to a variable or field, it is the default initializer for that variable or field. For example:
int a;
int b = 1;
typedef int t = 2;
t c;
t d = cast(t)3;
int.init // is 0
a.init // is 0
b.init // is 0
t.init // is 2
c.init // is 2
d.init // is 2
struct Foo {
int a;
int b = 7;
}
Foo.init.a // is 0
Foo.init.b // is 7.stringof Property
.stringof produces a constant string that is the source representation of its prefix. If applied to a type, it is the string for that type. If applied to an expression, it is the source representation of that expression. Semantic analysis is not done for that expression. For example:
module test;
import std.stdio;
struct Foo { }
enum Enum { RED }
typedef int myint;
void main() {
writeln((1+2).stringof); // "1 + 2"
writeln(Foo.stringof); // "Foo"
writeln(test.Foo.stringof); // "Foo"
writeln(int.stringof); // "int"
writeln((int*[5][]).stringof); // "int*[5u][]"
writeln(Enum.RED.stringof); // "cast(enum)0"
writeln(test.myint.stringof); // "myint"
writeln((5).stringof); // "5"
}.sizeof Property
e.sizeof gives the size in bytes of the expression e.
When getting the size of a member, it is not necessary for there to be a this object:
struct S {
int a;
static int foo() {
return a.sizeof; // returns 4
}
}
void test() {
int x = S.a.sizeof; // sets x to 4
}.sizeof applied to a class object returns the size of the class reference, not the class instantiation.
.alignof Property
.alignof gives the aligned size of an expression or type. For example, an aligned size of 1 means that it is aligned on a byte boundary, 4 means it is aligned on a 32 bit boundary.
.classinfo Property
.classinfo provides information about the dynamic type of a class object. It returns a reference to type object.TypeInfo_Class.
User Defined Class and Struct Properties
Properties are member functions that can be syntactically treated as if they were fields. Properties can be read from or written to. A property is read by calling a method with no arguments; a property is written by calling a method with its argument being the value it is set to.
A simple property would be:
struct Foo {
@property int data() { return m_data; } // read property
@property int data(int value) { return m_data = value; } // write property
private:
int m_data;
}Properties are marked with the @property attribute. Properties may only have zero or one parameter, and may not be variadic. Property functions may not be overloaded with non-property functions.
To use it:
int test() {
Foo f;
f.data = 3; // same as f.data(3);
return f.data + 3; // same as return f.data() + 3;
}The absence of a read method means that the property is write-only. The absence of a write method means that the property is read-only. Multiple write methods can exist; the correct one is selected using the usual function overloading rules.
In all the other respects, these methods are like any other methods. They can be static, have different linkages, have their address taken, etc.
Note: Properties currently cannot be the lvalue of an op=, ++, or -- operator.
Attributes
AttributeSpecifier:
Attribute :
Attribute DeclarationBlock
Attribute:
LinkageAttribute
AlignAttribute
Pragma
deprecated
ProtectionAttribute
static
final
synchronized
override
abstract
const
auto
scope
__gshared
shared
immutable
inout
@disable
DeclarationBlock:
DeclDef
{ }
{ DeclDefs }Attributes are a way to modify one or more declarations. The general forms are:
attribute declaration; // affects the declaration
attribute: // affects all declarations until the end of
// the current scope
declaration;
declaration;
...
attribute { // affects all declarations in the block
declaration;
declaration;
...
}For attributes with an optional else clause:
attribute
declaration;
else
declaration;
attribute { // affects all declarations in the block
declaration;
declaration;
...
}
else {
declaration;
declaration;
...
}Linkage Attribute
D provides an easy way to call C functions and operating system API functions, as compatibility with both is essential. The LinkageType is case sensitive, and is meant to be extensible by the implementation (they are not keywords). C and D must be supplied, the others are what makes sense for the implementation. C++ is reserved for future use. System is the same as Windows on Windows platforms, and C on other platforms. Implementation Note: for Win32 platforms, Windows and Pascal should exist.
C function calling conventions are specified by:
extern (C):
int foo(); // call foo() with C conventionsD conventions are:
extern (D):or:
extern:Windows API conventions are:
extern (Windows):
void *VirtualAlloc(
void *lpAddress,
uint dwSize,
uint flAllocationType,
uint flProtect
);Align Attribute
Specifies the alignment of struct members. align by itself sets it to the default, which matches the default member alignment of the companion C compiler. Integer specifies the alignment which matches the behavior of the companion C compiler when non-default alignments are used.
Matching the behavior of the companion C compiler can have some surprising results, such as the following for Digital Mars C++:
struct S {
align(4) byte a; // placed at offset 0
align(4) byte b; // placed at offset 1
}AlignAttribute is meant for C ABI compatiblity, which is not the same thing as binary compatibility across diverse platforms. For that, use packed structs:
align (1) struct S {
byte a; // placed at offset 0
byte[3] filler1;
byte b; // placed at offset 4
byte[3] filler2;
}A value of 1 means that no alignment is done; members are packed together.
Do not align references or pointers that were allocated using NewExpression on boundaries that are not a multiple of size_t. The garbage collector assumes that pointers and references to gc allocated objects will be on size_t byte boundaries. If they are not, undefined behavior will result.
AlignAttribute is ignored when applied to declarations that are not struct members. Whether it applies to class members or not is implementation defined.
The AlignAttribute is reset to the default when entering a struct, union, class, or function scope, and restored when exiting that scope. It is not inherited from a base class.
Deprecated Attribute
It is often necessary to deprecate a feature in a library, yet retain it for backwards compatibility. Such declarations can be marked as deprecated, which means that the compiler can be set to produce an error if any code refers to deprecated declarations:
deprecated
{
void oldFoo();
}Implementation Note: The compiler should have a switch specifying if deprecated declarations should be compiled with out complaint or not.
Protection Attribute
Protection is an attribute that is one of private, package, protected, public or export.
Private means that only members of the enclosing class can access the member, or members and functions in the same module as the enclosing class. Private members cannot be overridden. Private module members are equivalent to static declarations in C programs.
Package extends private so that package members can be accessed from code in other modules that are in the same package. This applies to the innermost package only, if a module is in nested packages.
Protected means that only members of the enclosing class or any classes derived from that class, or members and functions in the same module as the enclosing class, can access the member. If accessing a protected instance member through a derived class member function, that member can only be accessed for the object instance which is the ‘this’ object for the member function call. Protected module members are illegal.
Public means that any code within the executable can access the member.
Export means that any code outside the executable can access the member. Export is analogous to exporting definitions from a DLL.
Const Attribute
constThe const attribute declares constants that can be evaluated at compile time. For example:
const int foo = 7;
const {
double bar = foo + 6;
}immutable Attribute
__gshared Attribute
shared Attribute
inout Attribute
@disable Attribute
A reference to a declaration marked with the @disable attribute causes a compile time error. This can be used to explicitly disallow certain operations or overloads at compile time rather than relying on generating a runtime error.
struct T {
@disable this(this) { } // disabling this makes T not copyable
}
struct S {
T t; // uncopyable member makes S also not copyable
}
@disable void foo() { }
void main() {
S s;
S t = s; // error, S is not copyable
foo(); // error, foo is disabled
}Override Attribute
overrideThe override attribute applies to virtual functions. It means that the function must override a function with the same name and parameters in a base class. The override attribute is useful for catching errors when a base class's member function gets its parameters changed, and all derived classes need to have their overriding functions updated.
class Foo {
int bar();
int abc(int x);
}
class Foo2 : Foo {
override {
int bar(char c); // error, no bar(char) in Foo
int abc(int x); // ok
}
}Static Attribute
staticThe static attribute applies to functions and data. It means that the declaration does not apply to a particular instance of an object, but to the type of the object. In other words, it means there is no this reference. static is ignored when applied to other declarations.
class Foo {
static int bar() { return 6; }
int foobar() { return 7; }
}
...
Foo f = new Foo;
Foo.bar(); // produces 6
Foo.foobar(); // error, no instance of Foo
f.bar(); // produces 6;
f.foobar(); // produces 7;Static functions are never virtual.
Static data has only one instance for the entire program, not once per object.
Static does not have the additional C meaning of being local to a file. Use the private attribute in D to achieve that. For example:
module foo;
int x = 3; // x is global
private int y = 4; // y is local to module fooAuto Attribute
autoThe auto attribute is used when there are no other attributes and type inference is desired.
auto i = 6.8; // declare i as a doubleScope Attribute
scopeThe scope attribute is used for local variables and for class declarations. For class declarations, the scope attribute creates a scope class. For local declarations, scope implements the RAII (Resource Acquisition Is Initialization) protocol. This means that the destructor for an object is automatically called when the reference to it goes out of scope. The destructor is called even if the scope is exited via a thrown exception, thus scope is used to guarantee cleanup.
If there is more than one scope variable going out of scope at the same point, then the destructors are called in the reverse order that the variables were constructed.
scope cannot be applied to globals, statics, data members, ref or out parameters. Arrays of scopes are not allowed, and scope function return values are not allowed. Assignment to a scope, other than initialization, is not allowed. Rationale: These restrictions may get relaxed in the future if a compelling reason to appears.
Abstract Attribute
If a class is abstract, it cannot be instantiated directly. It can only be instantiated as a base class of another, non-abstract, class.
Classes become abstract if they are defined within an abstract attribute, or if any of the virtual member functions within it are declared as abstract.
Non-virtual functions cannot be declared as abstract.
Functions declared as abstract can still have function bodies. This is so that even though they must be overridden, they can still provide ‘base class functionality.’
Pragmas
Pragmas are a way to pass special information to the compiler and to add vendor specific extensions to D. Pragmas can be used by themselves terminated with a ‘;’, they can influence a statement, a block of statements, a declaration, or a block of declarations.
Pragmas can appear as either declarations, Pragma DeclarationBlock, or as statements, PragmaStatement.
pragma(ident); // just by itself
pragma(ident) declaration; // influence one declaration
pragma(ident): // influence subsequent declarations
declaration;
declaration;
pragma(ident) { // influence block of declarations
declaration;
declaration;
}
pragma(ident) statement; // influence one statement
pragma(ident) { // influence block of statements
statement;
statement;
}The kind of pragma it is is determined by the Identifier. ExpressionList is a comma-separated list of AssignExpressions. The AssignExpressions must be parsable as expressions, but what they mean semantically is up to the individual pragma semantics.
Predefined Pragmas
All implementations must support these, even if by just ignoring them:
- msg
Prints a message while compiling, the AssignExpressions must be string literals:pragma(msg, "compiling...");- lib
Inserts a directive in the object file to link in the library specified by the AssignExpression. The AssignExpressions must be a string literal:pragma(lib, "foo.lib");- startaddress
Puts a directive into the object file saying that the function specified in the first argument will be the start address for the program:void foo() { ... }This is not normally used for application level programming, but is for specialized systems work. For applications code, the start address is taken care of by the runtime library.
pragma(startaddress, foo);Vendor Specific Pragmas
Vendor specific pragma Identifiers can be defined if they are prefixed by the vendor's trademarked name, in a similar manner to version identifiers:
pragma(DigitalMars_funky_extension) { ... }Compilers must diagnose an error for unrecognized Pragmas, even if they are vendor specific ones. This implies that vendor specific pragmas should be wrapped in version statements:
version (DigitalMars)
{
pragma(DigitalMars_funky_extension)
{ ... }
}
Expressions
C and C++ programmers will find the D expressions very familiar, with a few interesting additions.
Expressions are used to compute values with a resulting type. These values can then be assigned, tested, or ignored. Expressions can also have side effects.
Order Of Evaluation
The following binary expressions are evaluated in strictly left-to-right order:
OrExpression, XorExpression, AndExpression, CmpExpression, ShiftExpression, AddExpression, CatExpression, MulExpression, PowExpression, CommaExpression, OrOrExpression, AndAndExpression
The following binary expressions are evaluated in an implementation-defined order:
AssignExpression, function parameters
It is an error to depend on order of evaluation when it is not specified. For example, the following are illegal:
i = i++;
c = a + (a = b);
func(++i, ++i);If the compiler can determine that the result of an expression is illegally dependent on the order of evaluation, it can issue an error (but is not required to). The ability to detect these kinds of errors is a quality of implementation issue.
Expressions
The left operand of the , is evaluated, then the right operand is evaluated. The type of the expression is the type of the right operand, and the result is the result of the right operand.Assign Expressions
AssignExpression:The right operand is implicitly converted to the type of the left operand, and assigned to it. The result type is the type of the lvalue, and the result value is the value of the lvalue after the assignment.
ConditionalExpression
ConditionalExpression = AssignExpression
ConditionalExpression += AssignExpression
ConditionalExpression -= AssignExpression
ConditionalExpression *= AssignExpression
ConditionalExpression /= AssignExpression
ConditionalExpression %= AssignExpression
ConditionalExpression &= AssignExpression
ConditionalExpression |= AssignExpression
ConditionalExpression ^= AssignExpression
ConditionalExpression ~= AssignExpression
ConditionalExpression <<= AssignExpression
ConditionalExpression >>= AssignExpression
ConditionalExpression >>>= AssignExpression
ConditionalExpression ^^= AssignExpressionThe left operand must be an lvalue.
Assignment Operator Expressions
Assignment operator expressions, such as:a op= bare semantically equivalent to:a = a op bexcept that operand a is only evaluated once.Conditional Expressions
The first expression is converted to bool, and is evaluated. If it is true, then the second expression is evaluated, and its result is the result of the conditional expression. If it is false, then the third expression is evaluated, and its result is the result of the conditional expression. If either the second or third expressions are of type void, then the resulting type is void. Otherwise, the second and third expressions are implicitly converted to a common type which becomes the result type of the conditional expression.OrOr Expressions
The result type of an OrOrExpression is bool, unless the right operand has type void, when the result is type void.The OrOrExpression evaluates its left operand. If the left operand, converted to type bool, evaluates to true, then the right operand is not evaluated. If the result type of the OrOrExpression is bool then the result of the expression is true. If the left operand is false, then the right operand is evaluated. If the result type of the OrOrExpression is bool then the result of the expression is the right operand converted to type bool.
AndAnd Expressions
AndAndExpression:
OrExpression
AndAndExpression && OrExpression
CmpExpression
AndAndExpression && CmpExpressionThe result type of an AndAndExpression is bool, unless the right operand has type void, when the result is type void.
The AndAndExpression evaluates its left operand.
If the left operand, converted to type bool, evaluates to false, then the right operand is not evaluated. If the result type of the AndAndExpression is bool then the result of the expression is false.
If the left operand is true, then the right operand is evaluated. If the result type of the AndAndExpression is bool then the result of the expression is the right operand converted to type bool.
Bitwise Expressions
Bit wise expressions perform a bitwise operation on their operands. Their operands must be integral types. First, the default integral promotions are done. Then, the bitwise operation is done.Or Expressions
The operands are OR'd together.Xor Expressions
The operands are XOR'd together.And Expressions
The operands are AND'd together.Compare Expressions
Equality Expressions
Equality expressions compare the two operands for equality (==) or inequality (!=). The type of the result is bool. The operands go through the usual conversions to bring them to a common type before comparison.If they are integral values or pointers, equality is defined as the bit pattern of the type matches exactly. Equality for struct objects means the bit patterns of the objects match exactly (the existence of alignment holes in the objects is accounted for, usually by setting them all to 0 upon initialization). Equality for floating point types is more complicated. -0 and +0 compare as equal. If either or both operands are NAN, then both the == returns false and != returns true. Otherwise, the bit patterns are compared for equality.
For complex numbers, equality is defined as equivalent to:
x.re == y.re && x.im == y.imand inequality is defined as equivalent to:x.re != y.re || x.im != y.imFor class and struct objects, the expression (a == b) is rewritten as a.opEquals(b), and (a != b) is rewritten as !a.opEquals(b).
For class objects, the == and != operators compare the contents of the objects. Therefore, comparing against null is invalid, as null has no contents. Use the is and !is operators instead.
class C;
C c;
if (c == null) // error
...
if (c is null) // ok
...For static and dynamic arrays, equality is defined as the lengths of the arrays matching, and all the elements are equal.
Identity Expressions
The is compares for identity. To compare for not identity, use e1 !is e2. The type of the result is bool. The operands go through the usual conversions to bring them to a common type before comparison.
For class objects, identity is defined as the object references are for the same object. Null class objects can be compared with is.
For struct objects, identity is defined as the bits in the struct being identical.
For static and dynamic arrays, identity is defined as referring to the same array elements and the same number of elements.
For other operand types, identity is defined as being the same as equality.
The identity operator is cannot be overloaded.
Relational Expressions
RelExpression:First, the integral promotions are done on the operands. The result type of a relational expression is bool.
ShiftExpression < ShiftExpression
ShiftExpression <= ShiftExpression
ShiftExpression > ShiftExpression
ShiftExpression >= ShiftExpression
ShiftExpression !<>= ShiftExpression
ShiftExpression !<> ShiftExpression
ShiftExpression <> ShiftExpression
ShiftExpression <>= ShiftExpression
ShiftExpression !> ShiftExpression
ShiftExpression !>= ShiftExpression
ShiftExpression !< ShiftExpression
ShiftExpression !<= ShiftExpressionFor class objects, the result of Object.opCmp() forms the left operand, and 0 forms the right operand. The result of the relational expression (o1 op o2) is:
(o1.opCmp(o2) op 0)It is an error to compare objects if one is null.For static and dynamic arrays, the result of the relational op is the result of the operator applied to the first non-equal element of the array. If two arrays compare equal, but are of different lengths, the shorter array compares as "less" than the longer array.
Integer comparisons
Integer comparisons happen when both operands are integral types.
Integer comparison operators Operator Relation < less > greater <= less or equal >= greater or equal == equal != not equalIt is an error to have one operand be signed and the other unsigned for a <, <=, > or >= expression. Use casts to make both operands signed or both operands unsigned.
Floating point comparisons
If one or both operands are floating point, then a floating point comparison is performed.Useful floating point operations must take into account NAN values. In particular, a relational operator can have NAN operands. The result of a relational operation on float values is less, greater, equal, or unordered (unordered means either or both of the operands is a NAN). That means there are 14 possible comparison conditions to test for:
Floating point comparison operators Operator Greater Than Less Than Equal Unordered Exception Relation == F F T F no equal != T T F T no unordered, less, or greater > T F F F yes greater >= T F T F yes greater or equal < F T F F yes less <= F T T F yes less or equal !<>= F F F T no unordered <> T T F F yes less or greater <>= T T T F yes less, equal, or greater !<= T F F T no unordered or greater !< T F T T no unordered, greater, or equal !>= F T F T no unordered or less !> F T T T no unordered, less, or equal !<> F F T T no unordered or equalNotes:
- For floating point comparison operators, (a !op b) is not the same as !(a op b).
- "Unordered" means one or both of the operands is a NAN.
- "Exception" means the Invalid Exception is raised if one of the operands is a NAN. It does not mean an exception is thrown. The Invalid Exception can be checked using the functions in std.c.fenv.
Class comparisons
For class objects, the relational operators compare the contents of the objects. Therefore, comparing against null is invalid, as null has no contents.
class C;
C c;
if (c < null) // error
...In Expressions
An associative array can be tested to see if an element is in the array:
int foo[char[]];
...
if ("hello" in foo)
...The in expression has the same precedence as the relational expressions <, <=, etc. The return value of the InExpression is null if the element is not in the array; if it is in the array it is a pointer to the element.
The !in expression is the logical negation of the in operation.
Shift Expressions
ShiftExpression:The operands must be integral types, and undergo the usual integral promotions. The result type is the type of the left operand after the promotions. The result value is the result of shifting the bits by the right operand's value.
AddExpression
ShiftExpression << AddExpression
ShiftExpression >> AddExpression
ShiftExpression >>> AddExpression<< is a left shift. >> is a signed right shift. >>> is an unsigned right shift.
It's illegal to shift by more bits than the size of the quantity being shifted:
int c;
c << 33; // errorAdd Expressions
AddExpression:
MulExpression
AddExpression + MulExpression
AddExpression - MulExpression
CatExpressionIf the operands are of integral types, they undergo integral promotions, and then are brought to a common type using the usual arithmetic conversions.
If either operand is a floating point type, the other is implicitly converted to floating point and they are brought to a common type via the usual arithmetic conversions.
If the operator is + or -, and the first operand is a pointer, and the second is an integral type, the resulting type is the type of the first operand, and the resulting value is the pointer plus (or minus) the second operand multiplied by the size of the type pointed to by the first operand.
If the second operand is a pointer, and the first is an integral type, and the operator is +, the operands are reversed and the pointer arithmetic just described is applied.
If both operands are pointers, and the operator is +, then it is illegal. For -, the pointers are subtracted and the result is divided by the size of the type pointed to by the operands. It is an error if the pointers point to different types.
Add expressions for floating point operands are not associative.
Cat Expressions
A CatExpression concatenates arrays, producing a dynmaic array with the result. The arrays must be arrays of the same element type. If one operand is an array and the other is of that array's element type, that element is converted to an array of length 1 of that element, and then the concatenation is performed.
Mul Expressions
MulExpression:
UnaryExpression
MulExpression * UnaryExpression
MulExpression / UnaryExpression
MulExpression % UnaryExpressionThe operands must be arithmetic types. They undergo integral promotions, and then are brought to a common type using the usual arithmetic conversions.
For integral operands, the *, /, and % correspond to multiply, divide, and modulus operations. For multiply, overflows are ignored and simply chopped to fit into the integral type.
For integral operands of the / and % operators, the quotient rounds towards zero and the remainder has the same sign as the dividend. If the divisor is zero, an Exception is thrown.
For floating point operands, the * and / operations correspond to the IEEE 754 floating point equivalents. % is not the same as the IEEE 754 remainder. For example, 15.0 % 10.0 == 5.0, whereas for IEEE 754, remainder(15.0,10.0) == -5.0.
Mul expressions for floating point operands are not associative.
Unary Expressions
UnaryExpression:
PowExpression
& UnaryExpression
++ UnaryExpression
-- UnaryExpression
* UnaryExpression
- UnaryExpression
+ UnaryExpression
! UnaryExpression
~ UnaryExpression
( Type ) . Identifier
NewExpression
DeleteExpression
CastExpression
NewAnonClassExpressionNew Expressions
NewExpression:
NewArguments Type [ AssignExpression ]
NewArguments Type ( ArgumentList )
NewArguments Type
NewArguments ClassArguments BaseClasslistopt { DeclDefs }
NewArguments:
new ( ArgumentList )
new ( )
new
ClassArguments:
class ( ArgumentList )
class ( )
class
ArgumentList:
AssignExpression
AssignExpression ,
AssignExpression , ArgumentListNewExpressions are used to allocate memory on the garbage collected heap (default) or using a class or struct specific allocator.
To allocate multidimensional arrays, the declaration reads in the same order as the prefix array declaration order.
char[][] foo; // dynamic array of strings
...
foo = new char[][30]; // allocate array of 30 stringsThe above allocation can also be written as:
foo = new char[][](30); // allocate array of 30 stringsTo allocate the nested arrays, multiple arguments can be used:
int[][][] bar;
...
bar = new int[][][](5,20,30);Which is equivalent to:
bar = new int[][][5];
foreach (ref a; bar)
{
a = new int[][20];
foreach (ref b; a)
{
b = new int[30];
}
}If there is a new ( ArgumentList ), then those arguments are passed to the class or struct specific allocator function after the size argument.
If a NewExpression is used as an initializer for a function local variable with scope storage class, and the ArgumentList to new is empty, then the instance is allocated on the stack rather than the heap or using the class specific allocator.
Delete Expressions
If the UnaryExpression is a class object reference, and there is a destructor for that class, the destructor is called for that object instance.
Next, if the UnaryExpression is a class object reference, or a pointer to a struct instance, and the class or struct has overloaded operator delete, then that operator delete is called for that class object instance or struct instance.
Otherwise, the garbage collector is called to immediately free the memory allocated for the class instance or struct instance. If the garbage collector was not used to allocate the memory for the instance, undefined behavior will result.
If the UnaryExpression is a pointer or a dynamic array, the garbage collector is called to immediately release the memory. If the garbage collector was not used to allocate the memory for the instance, undefined behavior will result.
The pointer, dynamic array, or reference is set to null after the delete is performed.
If UnaryExpression is a variable allocated on the stack, the class destructor (if any) is called for that instance. Neither the garbage collector nor any class deallocator is called.
Cast Expressions
CastExpression:
cast ( Type ) UnaryExpression
cast ( CastQual ) UnaryExpression
cast ( ) UnaryExpression
CastQual:
const
const shared
shared const
inout
inout shared
shared inout
immutable
sharedA CastExpression converts the UnaryExpression to Type.
cast(foo) -p; // cast (-p) to type foo
(foo) - p; // subtract p from fooAny casting of a class reference to a derived class reference is done with a runtime check to make sure it really is a downcast. null is the result if it isn't. Note: This is equivalent to the behavior of the dynamic_cast operator in C++.
class A { ... }
class B : A { ... }
void test(A a, B b) {
B bx = a; // error, need cast
B bx = cast(B) a; // bx is null if a is not a B
A ax = b; // no cast needed
A ax = cast(A) b; // no runtime check needed for upcast
}In order to determine if an object o is an instance of a class B use a cast:
if (cast(B) o)
{
// o is an instance of B
}
else
{
// o is not an instance of B
}Casting a floating point literal from one type to another changes its type, but internally it is retained at full precision for the purposes of constant folding.
void test() {
real a = 3.40483L;
real b;
b = 3.40483; // literal is not truncated to double precision
assert(a == b);
assert(a == 3.40483);
assert(a == 3.40483L);
assert(a == 3.40483F);
double d = 3.40483; // truncate literal when assigned to variable
assert(d != a); // so it is no longer the same
const double x = 3.40483; // assignment to const is not
assert(x == a); // truncated if the initializer is visible
}Casting a value v to a struct S, when value is not a struct of the same type, is equivalent to:
S(v)Casting to a CastQual adds the qualifier to the type of the UnaryExpression.
Casting to the empty ( ) has the effect of removing any top level const or immutable type modifiers from the type of the UnaryExpression.
Pow Expressions
PowExpression raises its left operand to the power of its right operand.
Postfix Expressions
PostfixExpression:
PrimaryExpression
PostfixExpression . Identifier
PostfixExpression . TemplateInstance
PostfixExpression . NewExpression
PostfixExpression ++
PostfixExpression --
PostfixExpression ( )
PostfixExpression ( ArgumentList )
IndexExpression
SliceExpressionIndex Expressions
PostfixExpression is evaluated. If PostfixExpression is an expression of type static array or dynamic array, the symbol $ is set to be the the number of elements in the array. If PostfixExpression is an ExpressionTuple, the symbol $ is set to be the the number of elements in the tuple. A new declaration scope is created for the evaluation of the ArgumentList and $ appears in that scope only.
If PostfixExpression is an ExpressionTuple, then the ArgumentList must consist of only one argument, and that must be statically evaluatable to an integral constant. That integral constant n then selects the nth expression in the ExpressionTuple, which is the result of the IndexExpression. It is an error if n is out of bounds of the ExpressionTuple.
Slice Expressions
PostfixExpression is evaluated. if PostfixExpression is an expression of type static array or dynamic array, the variable length (and the special variable $) is declared and set to be the length of the array. A new declaration scope is created for the evaluation of the AssignExpression..AssignExpression and length (and $) appears in that scope only.
The first AssignExpression is taken to be the inclusive lower bound of the slice, and the second AssignExpression is the exclusive upper bound. The result of the expression is a slice of the PostfixExpression array.
If the [ ] form is used, the slice is of the entire array.
The type of the slice is a dynamic array of the element type of the PostfixExpression.
If PostfixExpression is an ExpressionTuple, then the result of the slice is a new ExpressionTuple formed from the upper and lower bounds, which must statically evaluate to integral constants. It is an error if those bounds are out of range.
Primary Expressions
PrimaryExpression:
Identifier
.Identifier
TemplateInstance
this
super
null
true
false
$
__FILE__
__LINE__
IntegerLiteral
FloatLiteral
CharacterLiteral
StringLiterals
ArrayLiteral
AssocArrayLiteral
FunctionLiteral
AssertExpression
MixinExpression
ImportExpression
BasicType . Identifier
Typeof
TypeidExpression
IsExpression
( Expression )
TraitsExpression.Identifier
Identifier is looked up at module scope, rather than the current lexically nested scope.this
Within a non-static member function, this resolves to a reference to the object for which the function was called. If the object is an instance of a struct, this will be a pointer to that instance. If a member function is called with an explicit reference to typeof(this), a non-virtual call is made:
class A {
char get() { return 'A'; }
char foo() { return typeof(this).get(); }
char bar() { return this.get(); }
}
class B : A {
char get() { return 'B'; }
}
void main() {
B b = new B();
b.foo(); // returns 'A'
b.bar(); // returns 'B'
}super
super is identical to this, except that it is cast to this's base class. It is an error if there is no base class. It is an error to use super within a struct member function. (Only class Object has no base class.) If a member function is called with an explicit reference to super, a non-virtual call is made.
null
null represents the null value for pointers, pointers to functions, delegates, dynamic arrays, associative arrays, and class objects. If it has not already been cast to a type, it is given the type (void *) and it is an exact conversion to convert it to the null value for pointers, pointers to functions, delegates, etc. After it is cast to a type, such conversions are implicit, but no longer exact.
true, false
These are of type bool and when cast to another integral type become the values 1 and 0, respectively.Character Literals
Character literals are single characters and resolve to one of type char, wchar, or dchar. If the literal is a \u escape sequence, it resolves to type wchar. If the literal is a \U escape sequence, it resolves to type dchar. Otherwise, it resolves to the type with the smallest size it will fit into.String Literals
String literals can implicitly convert to any of the following types, they have equal weight:
immutable(char)* immutable(wchar)* immutable(dchar)* immutable(char)[] immutable(wchar)[] immutable(dchar)[]String literals have a 0 appended to them, which makes them easy to pass to C or C++ functions expecting a const char* string. The 0 is not included in the .length property of the string literal.
Array Literals
Array literals are a comma-separated list of AssignExpressions between square brackets [ and ]. The AssignExpressions form the elements of a static array, the length of the array is the number of elements. The type of the first element is taken to be the type of all the elements, and all elements are implicitly converted to that type. If that type is a static array, it is converted to a dynamic array.
[1,2,3]; // type is int[3], with elements 1, 2 and 3
[1u,2,3]; // type is uint[3], with elements 1u, 2u, and 3uIf any of the arguments in the ArgumentList are an ExpressionTuple, then the elements of the ExpressionTuple are inserted as arguments in place of the tuple.
Array literals are allocated on the memory managed heap. Thus, they can be returned safely from functions:
int[] foo() {
return [1, 2, 3];
}When array literals are cast to another array type, each element of the array is cast to the new element type. When arrays that are not literals are cast, the array is reinterpreted as the new type, and the length is recomputed:
import std.stdio;
void main() {
// cast array literal
const short[] ct = cast(short[]) [cast(byte)1, 1];
writeln(ct); // writes [1, 1]
// cast other array expression
short[] rt = cast(short[]) [cast(byte)1, cast(byte)1].dup;
writeln(rt); // writes [257]
}Associative Array Literals
AssocArrayLiteral:
[ KeyValuePairs ]
KeyValuePairs:
KeyValuePair
KeyValuePair , KeyValuePairs
KeyValuePair:
KeyExpression : ValueExpression
KeyExpression:
AssignExpression
ValueExpression:
AssignExpressionAssociative array literals are a comma-separated list of key:value pairs between square brackets [ and ]. The list cannot be empty. The type of the first key is taken to be the type of all the keys, and all subsequent keys are implicitly converted to that type. The type of the first value is taken to be the type of all the values, and all subsequent values are implicitly converted to that type. An AssocArrayLiteral cannot be used to statically initialize anything.
[21u:"he",38:"ho",2:"hi"]; // type is char[2][uint],
// with keys 21u, 38u and 2u
// and values "he", "ho", and "hi"If any of the keys or values in the KeyValuePairs are an ExpressionTuple, then the elements of the ExpressionTuple are inserted as arguments in place of the tuple.
Function Literals
FunctionLiteral:FunctionLiterals enable embedding anonymous functions and anonymous delegates directly into expressions. Type is the return type of the function or delegate, if omitted it is inferred from any ReturnStatements in the FunctionBody. ( ArgumentList ) forms the arguments to the function. If omitted it defaults to the empty argument list ( ). The type of a function literal is pointer to function or pointer to delegate. If the keywords function or delegate are omitted, it defaults to being a delegate.
function Typeopt ParameterAttributes opt FunctionBody
delegate Typeopt ParameterAttributes opt FunctionBody
ParameterAttributes FunctionBody
FunctionBody
ParameterAttributes:
Parameters
Parameters FunctionAttributesFor example:
int function(char c) fp; // declare pointer to a functionis exactly equivalent to:
void test() {
static int foo(char c) { return 6; }
fp = &foo;
}int function(char c) fp;And:
void test() {
fp = function int(char c) { return 6;} ;
}int abc(int delegate(long i));is exactly equivalent to:
void test() {
int b = 3;
int foo(long c) { return 6 + b; }
abc(&foo);
}int abc(int delegate(long i));
void test() {
int b = 3;
abc( delegate int(long c) { return 6 + b; } );
}and the following where the return type int is inferred:
int abc(int delegate(long i));Anonymous delegates can behave like arbitrary statement literals. For example, here an arbitrary statement is executed by a loop:
void test() {
int b = 3;
abc( (long c) { return 6 + b; } );
}double test() {When comparing with nested functions, the function form is analogous to static or non-nested functions, and the delegate form is analogous to non-static nested functions. In other words, a delegate literal can access stack variables in its enclosing function, a function literal cannot.
double d = 7.6;
float f = 2.3;
void loop(int k, int j, void delegate() statement) {
for (int i = k; i < j; i++) {
statement();
}
}
loop(5, 100, { d += 1; } );
loop(3, 10, { f += 3; } );
return d + f;
}Assert Expressions
Asserts evaluate the expression. If the result is false, an AssertError is thrown. If the result is true, then no exception is thrown. It is an error if the expression contains any side effects that the program depends on. The compiler may optionally not evaluate assert expressions at all. The result type of an assert expression is void. Asserts are a fundamental part of the Contract Programming support in D.
The expression assert(0) is a special case; it signifies that it is unreachable code. Either AssertError is thrown at runtime if it is reachable, or the execution is halted (on the x86 processor, a HLT instruction can be used to halt execution). The optimization and code generation phases of compilation may assume that it is unreachable code.
The second Expression, if present, must be implicitly convertible to type const(char)[]. It is evaluated if the result is false, and the string result is appended to the AssertError's message.
void main() {
assert(0, "an" ~ " error message");
}When compiled and run, it will produce the message:
Error: AssertError Failure test.d(3) an error messageMixin Expressions
The AssignExpression must evaluate at compile time to a constant string. The text contents of the string must be compilable as a valid AssignExpression, and is compiled as such.
int foo(int x) {
return mixin("x + 1") * 7; // same as ((x + 1) * 7)
}Import Expressions
The AssignExpression must evaluate at compile time to a constant string. The text contents of the string are interpreted as a file name. The file is read, and the exact contents of the file become a string literal.
Implementations may restrict the file name in order to avoid directory traversal security vulnerabilities. A possible restriction might be to disallow any path components in the file name.
void foo() {
// Prints contents of file foo.txt
writefln( import("foo.txt") );
}Typeid Expressions
If Type, returns an instance of class TypeInfo corresponding to Type.
If Expression, returns an instance of class TypeInfo corresponding to the type of the Expression. If the type is a class, it returns the TypeInfo of the dynamic type (i.e. the most derived type). The Expression is always executed.
class A { }
class B : A { }
void main() {
writeln(typeid(int)); // int
uint i;
writeln(typeid(i++)); // uint
writeln(i); // 1
A a = new B();
writeln(typeid(a)); // B
writeln(typeid(typeof(a))); // A
}IsExpression
IsExpression:IsExpressions are evaluated at compile time and are used for checking for valid types, comparing types for equivalence, determining if one type can be implicitly converted to another, and deducing the subtypes of a type. The result of an IsExpression is an int of type 0 if the condition is not satisified, 1 if it is.
is ( Type )
is ( Type : TypeSpecialization )
is ( Type == TypeSpecialization )
is ( Type Identifier )
is ( Type Identifier : TypeSpecialization )
is ( Type Identifier == TypeSpecialization )
is ( Type Identifier : TypeSpecialization , TemplateParameterList )
is ( Type Identifier == TypeSpecialization , TemplateParameterList )
TypeSpecialization:
Type
struct
union
class
interface
enum
function
delegate
super
const
immutable
inout
shared
returnType is the type being tested. It must be syntactically correct, but it need not be semantically correct. If it is not semantically correct, the condition is not satisfied.
Identifier is declared to be an alias of the resulting type if the condition is satisfied. The Identifier forms can only be used if the IsExpression appears in a StaticIfCondition.
TypeSpecialization is the type that Type is being compared against.
The forms of the IsExpression are:
- is ( Type )
The condition is satisfied if Type is semantically correct (it must be syntactically correct regardless).alias int func(int); // func is a alias to a function type
void foo() {
if (is(func[]) ) // not satisfied because arrays of
// functions are not allowed
writefln("satisfied");
else
writefln("not satisfied");
if (is([][])) // error, [][] is not a syntactically valid type
...
}- is ( Type : TypeSpecialization )
The condition is satisfied if Type is semantically correct and it is the same as or can be implicitly converted to TypeSpecialization. TypeSpecialization is only allowed to be a Type.alias short bar;
void foo(bar x) {
if ( is(bar : int) ) // satisfied because short can be
// implicitly converted to int
writefln("satisfied");
else
writefln("not satisfied");
}- is ( Type == TypeSpecialization )
The condition is satisfied if Type is semantically correct and is the same type as TypeSpecialization.If TypeSpecialization is one of struct union class interface enum function delegate const immutable shared then the condition is satisifed if Type is one of those.
alias short bar;
void test(bar x) {
if ( is(bar == int) ) // not satisfied because short is not
// the same type as int
writefln("satisfied");
else
writefln("not satisfied");
}- is ( Type Identifier )
The condition is satisfied if Type is semantically correct. If so, Identifier is declared to be an alias of Type.alias short bar;
void foo(bar x) {
static if ( is(bar T) )
alias T S;
else
alias long S;
writefln(typeid(S)); // prints "short"
if ( is(bar T) ) // error, Identifier T form can
// only be in StaticIfConditions
...
}- is ( Type Identifier : TypeSpecialization )
The condition is satisfied if Type is the same as TypeSpecialization, or if Type is a class and TypeSpecialization is a base class or base interface of it. The Identifier is declared to be either an alias of the TypeSpecialization or, if TypeSpecialization is dependent on Identifier, the deduced type.
alias int bar;
alias long* abc;
void foo(bar x, abc a) {
static if ( is(bar T : int) )
alias T S;
else
alias long S;
writefln(typeid(S)); // prints "int"
static if ( is(abc U : U*) )
U u;
writefln(typeid(typeof(u))); // prints "long"
}The way the type of Identifier is determined is analogous to the way template parameter types are determined by TemplateTypeParameterSpecialization.
- is ( Type Identifier == TypeSpecialization )
The condition is satisfied if Type is semantically correct and is the same as TypeSpecialization. The Identifier is declared to be either an alias of the TypeSpecialization or, if TypeSpecialization is dependent on Identifier, the deduced type.
If TypeSpecialization is one of struct union class interface enum function delegate const immutable shared then the condition is satisifed if Type is one of those. Furthermore, Identifier is set to be an alias of the type:
keyword alias type for Identifier struct Type union Type class Type interface Type super TypeTuple of base classes and interfaces enum the base type of the enum function TypeTuple of the function parameter types delegate the function type of the delegate return the return type of the function, delegate, or function pointer const Type immutable Type shared Typealias short bar;
enum E : byte { Emember }
void foo(bar x) {
static if ( is(bar T == int) ) // not satisfied, short is not int
alias T S;
alias T U; // error, T is not defined
static if ( is(E V == enum) ) // satisified, E is an enum
V v; // v is declared to be a byte
}- is ( Type Identifier : TypeSpecialization , TemplateParameterList )
is ( Type Identifier == TypeSpecialization , TemplateParameterList )More complex types can be pattern matched; the TemplateParameterList declares symbols based on the parts of the pattern that are matched, analogously to the way implied template parameters are matched.
import std.stdio;
void main() {
alias long[char[]] AA;
static if (is(AA T : T[U], U : const char[]))
{
writefln(typeid(T)); // long
writefln(typeid(U)); // const char[]
}
static if (is(AA A : A[B], B : int))
{
assert(0); // should not match, as B is not an int
}
static if (is(int[10] W : W[V], int V))
{
writefln(typeid(W)); // int
writefln(V); // 10
}
static if (is(int[10] X : X[Y], int Y : 5))
{
assert(0); // should not match, Y should be 10
}
}Associativity and Commutativity
An implementation may rearrange the evaluation of expressions according to arithmetic associativity and commutativity rules as long as, within that thread of execution, no observable difference is possible.
This rule precludes any associative or commutative reordering of floating point expressions.
Statements
C and C++ programmers will find the D statements very familiar, with a few interesting additions.Statement:
;
NonEmptyStatement
ScopeBlockStatement
NoScopeNonEmptyStatement:
NonEmptyStatement
BlockStatement
NoScopeStatement:
;
NonEmptyStatement
BlockStatement
NonEmptyOrScopeBlockStatement:
NonEmptyStatement
ScopeBlockStatement
NonEmptyStatement:
NonEmptyStatementNoCaseNoDefault
CaseStatement
CaseRangeStatement
DefaultStatement
NonEmptyStatementNoCaseNoDefault:
LabeledStatement
ExpressionStatement
DeclarationStatement
IfStatement
WhileStatement
DoStatement
ForStatement
ForeachStatement
SwitchStatement
FinalSwitchStatement
ContinueStatement
BreakStatement
ReturnStatement
GotoStatement
WithStatement
SynchronizedStatement
TryStatement
ScopeGuardStatement
ThrowStatement
AsmStatement
PragmaStatement
MixinStatement
ForeachRangeStatement
ConditionalStatement
StaticAssert
TemplateMixin
ImportDeclarationAny ambiguities in the grammar between Statements and Declarations are resolved by the declarations taking precedence. If a Statement is desired instead, wrapping it in parentheses will disambiguate it in favor of being a Statement.
Scope Statements
A new scope for local symbols is introduced for the NonEmptyStatement or BlockStatement.
Even though a new scope is introduced, local symbol declarations cannot shadow (hide) other local symbol declarations in the same function.
void func1(int x) {
int x; // illegal, x shadows parameter x
int y;
{ int y; } // illegal, y shadows enclosing scope's y
void delegate() dg;
dg = { int y; }; // ok, this y is not in the same function
struct S {
int y; // ok, this y is a member, not a local
}
{ int z; }
{ int z; } // ok, this z is not shadowing the other z
{ int t; }
{ t++; } // illegal, t is undefined
}The idea is to avoid bugs in complex functions caused by scoped declarations inadvertently hiding previous ones. Local names should all be unique within a function.
Scope Block Statements
A scope block statement introduces a new scope for the BlockStatement.
Labeled Statements
Statements can be labeled. A label is an identifier that precedes a statement.
Any statement can be labeled, including empty statements, and so can serve as the target of a goto statement. Labeled statements can also serve as the target of a break or continue statement.
Labels are in a name space independent of declarations, variables, types, etc. Even so, labels cannot have the same name as local declarations. The label name space is the body of the function they appear in. Label name spaces do not nest, i.e. a label inside a block statement is accessible from outside that block.
Block Statement
A block statement is a sequence of statements enclosed by { }. The statements are executed in lexical order.
Expression Statement
The expression is evaluated.Expressions that have no effect, like (x + x), are illegal in expression statements. If such an expression is needed, casting it to void will make it legal.
int x;
x++; // ok
x; // illegal
1+1; // illegal
cast(void)(x + x); // okDeclaration Statement
Declaration statements declare variables and types.DeclarationStatement:
DeclarationSome declaration statements:
int a; // declare a as type int and initialize it to 0
struct S { } // declare struct s
alias int myint;If Statement
If statements provide simple conditional execution of statements.IfStatement:Expression is evaluated and must have a type that can be converted to a boolean. If it's true the ThenStatement is transferred to, else the ElseStatement is transferred to.
if ( IfCondition ) ThenStatement
if ( IfCondition ) ThenStatement else ElseStatement
IfCondition:
Expression
auto Identifier = Expression
BasicType Declarator = Expression
ThenStatement:
ScopeStatement
ElseStatement:
ScopeStatementThe 'dangling else' parsing problem is solved by associating the else with the nearest if statement.
If an auto Identifier is provided, it is declared and initialized to the value and type of the Expression. Its scope extends from when it is initialized to the end of the ThenStatement.
If a Declarator is provided, it is declared and initialized to the value of the Expression. Its scope extends from when it is initialized to the end of the ThenStatement.
import std.regexp;
...
if (auto m = std.regexp.search("abcdef", "b(c)d"))
{
writefln("[%s]", m.pre); // prints [a]
writefln("[%s]", m.post); // prints [ef]
writefln("[%s]", m.match(0)); // prints [bcd]
writefln("[%s]", m.match(1)); // prints [c]
writefln("[%s]", m.match(2)); // prints []
}
else
{
writefln(m.post); // error, m undefined
}
writefln(m.pre); // error, m undefinedWhile Statement
While statements implement simple loops. Expression is evaluated and must have a type that can be converted to a boolean. If it's true the ScopeStatement is executed. After the ScopeStatement is executed, the Expression is evaluated again, and if true the ScopeStatement is executed again. This continues until the Expression evaluates to false.int i = 0;A BreakStatement will exit the loop. A ContinueStatement will transfer directly to evaluating Expression again.
while (i < 10) {
foo(i);
i++;
}Do Statement
Do while statements implement simple loops. ScopeStatement is executed. Then Expression is evaluated and must have a type that can be converted to a boolean. If it's true the loop is iterated again. This continues until the Expression evaluates to false.int i = 0;A BreakStatement will exit the loop. A ContinueStatement will transfer directly to evaluating Expression again.
do {
foo(i);
} while (++i < 10);For Statement
For statements implement loops with initialization, test, and increment clauses.ForStatement:
for (Initialize Testopt ; Incrementopt) ScopeStatement
Initialize:
;
NoScopeNonEmptyStatement
Test:
Expression
Increment:
ExpressionInitialize is executed. Test is evaluated and must have a type that can be converted to a boolean. If it's true the statement is executed. After the statement is executed, the Increment is executed. Then Test is evaluated again, and if true the statement is executed again. This continues until the Test evaluates to false.
A BreakStatement will exit the loop. A ContinueStatement will transfer directly to the Increment.
A ForStatement creates a new scope. If Initialize declares a variable, that variable's scope extends through the end of the for statement. For example:
for (int i = 0; i < 10; i++)is equivalent to:
foo(i);{Function bodies cannot be empty:
int i;
for (i = 0; i < 10; i++)
foo(i);
}for (int i = 0; i < 10; i++)Use instead:
; // illegalfor (int i = 0; i < 10; i++)The Initialize may be omitted. Test may also be omitted, and if so, it is treated as if it evaluated to true.
{
}Foreach Statement
A foreach statement loops over the contents of an aggregate.ForeachStatement:
Foreach (ForeachTypeList ; Aggregate) NoScopeNonEmptyStatement
Foreach:
foreach
foreach_reverse
ForeachTypeList:
ForeachType
ForeachType , ForeachTypeList
ForeachType:
ref BasicType Declarator
BasicType Declarator
ref Identifier
Identifier
Aggregate:
ExpressionAggregate is evaluated. It must evaluate to an expression of type static array, dynamic array, associative array, struct, class, delegate, or tuple. The NoScopeNonEmptyStatement is executed, once for each element of the aggregate. At the start of each iteration, the variables declared by the ForeachTypeList are set to be a copy of the elements of the aggregate. If the variable is ref, it is a reference to the contents of that aggregate.
The aggregate must be loop invariant, meaning that elements to the aggregate cannot be added or removed from it in the NoScopeNonEmptyStatement.
Foreach over Arrays
If the aggregate is a static or dynamic array, there can be one or two variables declared. If one, then the variable is said to be the value set to the elements of the array, one by one. The type of the variable must match the type of the array contents, except for the special cases outlined below. If there are two variables declared, the first is said to be the index and the second is said to be the value. The index must be of int, uint or size_t type, it cannot be ref, and it is set to be the index of the array element.
char[] a;
...
foreach (int i, char c; a)
{
writefln("a[%d] = '%c'", i, c);
}For foreach, the elements for the array are iterated over starting at index 0 and continuing to the maximum of the array. For foreach_reverse, the array elements are visited in the reverse order.
Foreach over Arrays of Characters
If the aggregate expression is a static or dynamic array of chars, wchars, or dchars, then the Type of the value can be any of char, wchar, or dchar. In this manner any UTF array can be decoded into any UTF type:
char[] a = "\xE2\x89\xA0".dup; // \u2260 encoded as 3 UTF-8 bytes
foreach (dchar c; a)
{
writefln("a[] = %x", c); // prints 'a[] = 2260'
}
dchar[] b = "\u2260"d.dup;
foreach (char c; b)
{
writef("%x, ", c); // prints 'e2, 89, a0, '
}Aggregates can be string literals, which can be accessed as char, wchar, or dchar arrays:
void test() {
foreach (char c; "ab") {
writefln("'%s'", c);
}
foreach (wchar w; "xy") {
writefln("'%s'", w);
}
}which would print:
'a'
'b'
'x'
'y'Foreach over Associative Arrays
If the aggregate expression is an associative array, there can be one or two variables declared. If one, then the variable is said to be the value set to the elements of the array, one by one. The type of the variable must match the type of the array contents. If there are two variables declared, the first is said to be the index and the second is said to be the value. The index must be of the same type as the indexing type of the associative array. It cannot be ref, and it is set to be the index of the array element. The order in which the elements of the array is unspecified for foreach. foreach_reverse for associative arrays is illegal.
double[string] a; // index type is string, value type is double
...
foreach (string s, double d; a)
{
writefln("a['%s'] = %g", s, d);
}Foreach over Structs and Classes with Ranges
Iteration over struct and class objects can be done with ranges, which means the following properties must be defined:
Foreach Range Properties Property Purpose .empty returns true if no more elements .popFront move the left edge of the range right one .popBack move the right edge of the range left one .front return the leftmost element of the range .back return the rightmost element of the rangeMeaning:
foreach (e; range) { ... }translates to:
for (auto __r = range; !__r.empty; __r.next)
{
auto e = __r.head;
...
}Similarly:
foreach_reverse (e; range) { ... }translates to:
for (auto __r = range; !__r.empty; __r.retreat)
{
auto e = __r.toe;
...
}If the foreach range properties do not exist, the opApply method will be used instead.
Foreach over Structs and Classes with opApply
If it is a struct or class object, the foreach is defined by the special opApply member function. The foreach_reverse behavior is defined by the special opApplyReverse member function. These special functions must be defined by the type in order to use the corresponding foreach statement. The functions have the type:
int opApply(int delegate(ref Type [, ...]) dg);
int opApplyReverse(int delegate(ref Type [, ...]) dg);where Type matches the Type used in the ForeachType declaration of Identifier. Multiple ForeachTypes correspond with multiple Type's in the delegate type passed to opApply or opApplyReverse. There can be multiple opApply and opApplyReverse functions, one is selected by matching the type of dg to the ForeachTypes of the ForeachStatement. The body of the apply function iterates over the elements it aggregates, passing them each to the dg function. If the dg returns 0, then apply goes on to the next element. If the dg returns a nonzero value, apply must cease iterating and return that value. Otherwise, after done iterating across all the elements, apply will return 0.
For example, consider a class that is a container for two elements:
class Foo {An example using this might be:
uint array[2];
int opApply(int delegate(ref uint) dg)
{ int result = 0;
for (int i = 0; i < array.length; i++)
{
result = dg(array[i]);
if (result)
break;
}
return result;
}
}void test() {which would print:
Foo a = new Foo();
a.array[0] = 73;
a.array[1] = 82;
foreach (uint u; a)
{
writefln("%d", u);
}
}73
82Foreach over Delegates
If Aggregate is a delegate, the type signature of the delegate is of the same as for opApply. This enables many different named looping strategies to coexist in the same class or struct.
Foreach over Tuples
If the aggregate expression is a tuple, there can be one or two variables declared. If one, then the variable is said to be the value set to the elements of the tuple, one by one. If the type of the variable is given, it must match the type of the tuple contents. If it is not given, the type of the variable is set to the type of the tuple element, which may change from iteration to iteration. If there are two variables declared, the first is said to be the index and the second is said to be the value. The index must be of int or uint type, it cannot be ref, and it is set to be the index of the tuple element.
If the tuple is a list of types, then the foreach statement is executed once for each type, and the value is aliased to that type.
import std.stdio;
import std.typetuple; // for TypeTuple
void main() {
alias TypeTuple!(int, long, double) TL;
foreach (T; TL)
{
writeln(typeid(T));
}
}Prints:
int
long
doubleForeach Ref Parameters
ref can be used to update the original elements:
void test() {which would print:
static uint[2] a = [7, 8];
foreach (ref uint u; a)
{
u++;
}
foreach (uint u; a)
{
writefln("%d", u);
}
}8
9ref can not be applied to the index values.
If not specified, the Types in the ForeachType can be inferred from the type of the Aggregate.
Foreach Restrictions
The aggregate itself must not be resized, reallocated, free'd, reassigned or destructed while the foreach is iterating over the elements.
int[] a;
int[] b;
foreach (int i; a)
{
a = null; // error
a.length = a.length + 10; // error
a = b; // error
}
a = null; // okForeach Range Statement
A foreach range statement loops over the specified range.ForeachRangeStatement:
Foreach (ForeachType ; LwrExpression .. UprExpression ) ScopeStatement
LwrExpression:
Expression
UprExpression:
ExpressionForeachType declares a variable with either an explicit type, or a type inferred from LwrExpression and UprExpression. The ScopeStatement is then executed n times, where n is the result of UprExpression - LwrExpression. If UprExpression is less than or equal to LwrExpression, the ScopeStatement is executed zero times. If Foreach is foreach, then the variable is set to LwrExpression, then incremented at the end of each iteration. If Foreach is foreach_reverse, then the variable is set to UprExpression, then decremented before each iteration. LwrExpression and UprExpression are each evaluated exactly once, regardless of how many times the ScopeStatement is executed.
import std.stdio;
int foo() {
write("foo");
return 10;
}
void main() {
foreach (i; 0 .. foo())
{
write(i);
}
}Prints:
foo0123456789Break and Continue out of Foreach
A BreakStatement in the body of the foreach will exit the foreach, a ContinueStatement will immediately start the next iteration.
Switch Statement
A switch statement goes to one of a collection of case statements depending on the value of the switch expression.SwitchStatement:
switch ( Expression ) ScopeStatement
CaseStatement:
case ArgumentList : ScopeStatementList
CaseRangeStatement:
case FirstExp : .. case LastExp : ScopeStatementList
FirstExp:
AssignExpression
LastExp:
AssignExpression
DefaultStatement:
default : ScopeStatementList
ScopeStatementList:
StatementListNoCaseNoDefault
StatementListNoCaseNoDefault:
StatementNoCaseNoDefault
StatementNoCaseNoDefault StatementListNoCaseNoDefault
StatementNoCaseNoDefault:
;
NonEmptyStatementNoCaseNoDefault
ScopeBlockStatementExpression is evaluated. The result type T must be of integral type or char[], wchar[] or dchar[]. The result is compared against each of the case expressions. If there is a match, the corresponding case statement is transferred to.
The case expressions, ArgumentList, are a comma separated list of expressions.
A CaseRangeStatement is a shorthand for listing a series of case statements from FirstExp to LastExp.
If none of the case expressions match, and there is a default statement, the default statement is transferred to.
A switch statement must have a default statement.
The case expressions must all evaluate to a constant value or array, or a runtime initialized const or immutable variable of integral type. They must be implicitly convertible to the type of the switch Expression.
Case expressions must all evaluate to distinct values. Const or immutable variables must all have different names. If they share a value, the first case statement with that value gets control. There may not be two or more default statements.
The ScopeStatementList introduces a new scope.
Case statements and default statements associated with the switch can be nested within block statements; they do not have to be in the outermost block. For example, this is allowed:
switch (i) {
case 1:
{
case 2:
}
break;
}Case statements 'fall through' to subsequent case values. A break statement will exit the switch BlockStatement. For example:
switch (i) {
case 1:
x = 3;
case 2:
x = 4;
break;
case 3,4,5:
x = 5;
break;
}will set x to 4 if i is 1.
Strings can be used in switch expressions. For example:
char[] name;
...
switch (name) {
case "fred":
case "sally":
...
}For applications like command line switch processing, this can lead to much more straightforward code, being clearer and less error prone. char, wchar and dchar strings are allowed.
Implementation Note: The compiler's code generator may assume that the case statements are sorted by frequency of use, with the most frequent appearing first and the least frequent last. Although this is irrelevant as far as program correctness is concerned, it is of performance interest.
Final Switch Statement
A final switch statement is just like a switch statement, except that:
- No DefaultStatement is allowed.
- No CaseRangeStatements are allowed.
- If the switch Expression is of enum type, all the enum members must appear in the CaseStatements.
- The case expressions cannot evaluate to a run time initialized value.
Continue Statement
ContinueStatement:A continue aborts the current iteration of its enclosing loop statement, and starts the next iteration. continue executes the next iteration of its innermost enclosing while, for, foreach, or do loop. The increment clause is executed.
continue;
continue Identifier ;If continue is followed by Identifier, the Identifier must be the label of an enclosing while, for, or do loop, and the next iteration of that loop is executed. It is an error if there is no such statement.
Any intervening finally clauses are executed, and any intervening synchronization objects are released.
Note: If a finally clause executes a return, throw, or goto out of the finally clause, the continue target is never reached.
for (i = 0; i < 10; i++)
{
if (foo(i))
continue;
bar();
}Break Statement
BreakStatement:A break exits the enclosing statement. break exits the innermost enclosing while, for, foreach, do, or switch statement, resuming execution at the statement following it.
break;
break Identifier ;If break is followed by Identifier, the Identifier must be the label of an enclosing while, for, do or switch statement, and that statement is exited. It is an error if there is no such statement.
Any intervening finally clauses are executed, and any intervening synchronization objects are released.
Note: If a finally clause executes a return, throw, or goto out of the finally clause, the break target is never reached.
for (i = 0; i < 10; i++)
{
if (foo(i))
break;
}Return Statement
A return exits the current function and supplies its return value. Expression is required if the function specifies a return type that is not void. The Expression is implicitly converted to the function return type.At least one return statement, throw statement, or assert(0) expression is required if the function specifies a return type that is not void, unless the function contains inline assembler code.
Expression is allowed even if the function specifies a void return type. The Expression will be evaluated, but nothing will be returned. If the Expression has no side effects, and the return type is void, then it is illegal.
Before the function actually returns, any objects with scope storage duration are destroyed, any enclosing finally clauses are executed, any scope(exit) statements are executed, any scope(success) statements are executed, and any enclosing synchronization objects are released.
The function will not return if any enclosing finally clause does a return, goto or throw that exits the finally clause.
If there is an out postcondition (see Contract Programming), that postcondition is executed after the Expression is evaluated and before the function actually returns.
int foo(int x)
{
return x + 3;
}Goto Statement
A goto transfers to the statement labeled with Identifier.if (foo)The second form, goto default;, transfers to the innermost DefaultStatement of an enclosing SwitchStatement.
goto L1;
x = 3;
L1:
x++;The third form, goto case;, transfers to the next CaseStatement of the innermost enclosing SwitchStatement.
The fourth form, goto case Expression;, transfers to the CaseStatement of the innermost enclosing SwitchStatement with a matching Expression.
switch (x)Any intervening finally clauses are executed, along with releasing any intervening synchronization mutexes.
{
case 3:
goto case;
case 4:
goto default;
case 5:
goto case 4;
default:
x = 4;
break;
}It is illegal for a GotoStatement to be used to skip initializations.
With Statement
The with statement is a way to simplify repeated references to the same object.WithStatement:where Expression evaluates to a class reference or struct instance. Within the with body the referenced object is searched first for identifier symbols. The WithStatement
with ( Expression ) ScopeStatement
with ( Symbol ) ScopeStatement
with ( TemplateInstance ) ScopeStatementwith (expression)is semantically equivalent to:
{
...
ident;
}{
Object tmp;
tmp = expression;
...
tmp.ident;
}Note that Expression only gets evaluated once. The with statement does not change what this or super refer to.
For Symbol which is a scope or TemplateInstance, the corresponding scope is searched when looking up symbols. For example:
struct Foo {
alias int Y;
}
...
Y y; // error, Y undefined
with (Foo) {
Y y; // same as Foo.Y y;
}Use of with object symbols that shadow local symbols with the same identifier are not allowed. This is to reduce the risk of inadvertant breakage of with statements when new members are added to the object declaration.
struct S {
float x;
}
void main() {
int x;
S s;
with (s) {
x++; // error, shadows the int x declaration
}
}Synchronized Statement
The synchronized statement wraps a statement with a mutex to synchronize access among multiple threads.
Synchronized allows only one thread at a time to execute ScopeStatement by using a mutex.
What mutex is used is determined by the Expression. If there is no Expression, then a global mutex is created, one per such synchronized statement. Different synchronized statements will have different global mutexes.
If there is an Expression, it must evaluate to either an Object or an instance of an Interface, in which case it is cast to the Object instance that implemented that Interface. The mutex used is specific to that Object instance, and is shared by all synchronized statements referring to that instance.
The synchronization gets released even if ScopeStatement terminates with an exception, goto, or return.
Example:
synchronized { ... }This implements a standard critical section.
Try Statement
Exception handling is done with the try-catch-finally statement.TryStatement:
try ScopeStatement Catches
try ScopeStatement Catches FinallyStatement
try ScopeStatement FinallyStatement
Catches:
LastCatch
Catch
Catch Catches
LastCatch:
catch NoScopeNonEmptyStatement
Catch:
catch ( CatchParameter ) NoScopeNonEmptyStatement
CatchParameter:
BasicType Identifier
FinallyStatement:
finally NoScopeNonEmptyStatementCatchParameter declares a variable v of type T, where T is Throwable or derived from Throwable. v is initialized by the throw expression if T is of the same type or a base class of the throw expression. The catch clause will be executed if the exception object is of type T or derived from T.
If just type T is given and no variable v, then the catch clause is still executed.
It is an error if any CatchParameter type T1 hides a subsequent Catch with type T2, i.e. it is an error if T1 is the same type as or a base class of T2.
LastCatch catches all exceptions.
The FinallyStatement is always executed, whether the try ScopeStatement exits with a goto, break, continue, return, exception, or fall-through.
If an exception is raised in the FinallyStatement and is not caught before the original exception is caught, it is chained to the previous exception via the next member of Throwable. Note that, in contrast to most other programming languages, the new exception does not replace the original exception. Instead, later exceptions are regarded as 'collateral damage' caused by the first exception. The original exception must be caught, and this results in the capture of the entire chain.
Thrown objects derived from Error are treated differently. They bypass the normal chaining mechanism, such that the chain can only be caught by catching the first Error. In addition to the list of subsequent exceptions, Error also contains a pointer that points to the original exception (the head of the chain) if a bypass occurred, so that the entire exception history is retained.
import std.stdio;prints:
int main() {
try {
try {
throw new Exception("first");
}
finally {
writefln("finally");
throw new Exception("second");
}
}
catch(Exception e) {
writefln("catch %s", e.msg);
}
writefln("done");
return 0;
}finally
catch first
doneA FinallyStatement may not exit with a goto, break, continue, or return; nor may it be entered with a goto.
A FinallyStatement may not contain any Catches. This restriction may be relaxed in future versions.
Throw Statement
Throw an exception. Expression is evaluated and must be a Throwable reference. The Throwable reference is thrown as an exception.throw new Exception("message");Scope Guard Statement
ScopeGuardStatement:The ScopeGuardStatement executes NonEmptyOrScopeBlockStatement at the close of the current scope, rather than at the point where the ScopeGuardStatement appears. scope(exit) executes NonEmptyOrScopeBlockStatement when the scope exits normally or when it exits due to exception unwinding. scope(failure) executes NonEmptyOrScopeBlockStatement when the scope exits due to exception unwinding. scope(success) executes NonEmptyOrScopeBlockStatement when the scope exits normally.
scope(exit) NonEmptyOrScopeBlockStatement
scope(success) NonEmptyOrScopeBlockStatement
scope(failure) NonEmptyOrScopeBlockStatementIf there are multiple ScopeGuardStatements in a scope, they are executed in the reverse lexical order in which they appear. If any scope instances are to be destructed upon the close of the scope, they also are interleaved with the ScopeGuardStatements in the reverse lexical order in which they appear.
write("1"); {writes:
write("2");
scope(exit) write("3");
scope(exit) write("4");
write("5");
}
writeln();12543{writes:
scope(exit) write("1");
scope(success) write("2");
scope(exit) write("3");
scope(success) write("4");
}
writeln();4321class Foo {writes:
this() { write("0"); }
~this() { write("1"); }
}
try {
scope(exit) write("2");
scope(success) write("3");
scope Foo f = new Foo();
scope(failure) write("4");
throw new Exception("msg");
scope(exit) write("5");
scope(success) write("6");
scope(failure) write("7");
}
catch (Exception e) {
}
writeln();0412A scope(exit) or scope(success) statement may not exit with a throw, goto, break, continue, or return; nor may it be entered with a goto.Asm Statement
Inline assembler is supported with the asm statement:AsmStatement:An asm statement enables the direct use of assembly language instructions. This makes it easy to obtain direct access to special CPU features without resorting to an external assembler. The D compiler will take care of the function calling conventions, stack setup, etc.
asm { }
asm { AsmInstructionList }
AsmInstructionList:
AsmInstruction ;
AsmInstruction ; AsmInstructionListThe format of the instructions is, of course, highly dependent on the native instruction set of the target CPU, and so is implementation defined. But, the format will follow the following conventions:
These rules exist to ensure that D source code can be tokenized independently of syntactic or semantic analysis.
- It must use the same tokens as the D language uses.
- The comment form must match the D language comments.
- Asm instructions are terminated by a ;, not by an end of line.
For example, for the Intel Pentium:
int x = 3;Inline assembler can be used to access hardware directly:
asm {
mov EAX,x; // load x and put it in register EAX
}int gethardware() {For some D implementations, such as a translator from D to C, an inline assembler makes no sense, and need not be implemented. The version statement can be used to account for this:
asm {
mov EAX, dword ptr 0x1234;
}
}version (D_InlineAsm_X86)
{
asm {
...
}
}
else
{
/* ... some workaround ... */
}Semantically consecutive AsmStatements shall not have any other instructions (such as register save or restores) inserted between them by the compiler.
Pragma Statement
Mixin Statement
The AssignExpression must evaluate at compile time to a constant string. The text contents of the string must be compilable as a valid StatementList, and is compiled as such.
import std.stdio;
void main() {
int j;
mixin("
int x = 3;
for (int i = 0; i < 3; i++)
writefln(x + i, ++j);
"); // ok
const char[] s = "int y;";
mixin(s); // ok
y = 4; // ok, mixin declared y
char[] t = "y = 3;";
mixin(t); // error, t is not evaluatable at compile time
mixin("y =") 4; // error, string must be complete statement
mixin("y =" ~ "4;"); // ok
}
Arrays
There are four kinds of arrays:
Kinds of Arrays Syntax Description type* Pointers to data type[integer] Static arrays type[] Dynamic arrays type[type] Associative arraysPointers
int* p;These are simple pointers to data, analogous to C pointers. Pointers are provided for interfacing with C and for specialized systems work. There is no length associated with it, and so there is no way for the compiler or runtime to do bounds checking, etc., on it. Most conventional uses for pointers can be replaced with dynamic arrays, out and ref parameters, and reference types.
Static Arrays
int[3] s;These are analogous to C arrays. Static arrays are distinguished by having a length fixed at compile time.
The total size of a static array cannot exceed 16Mb. A dynamic array should be used instead for such large arrays.
A static array with a dimension of 0 is allowed, but no space is allocated for it. It's useful as the last member of a variable length struct, or as the degenerate case of a template expansion.
Static arrays are value types. Unlike in C and D version 1, static arrays are passed to functions by value. Static arrays can also be returned by functions.
Dynamic Arrays
int[] a;Dynamic arrays consist of a length and a pointer to the array data. Multiple dynamic arrays can share all or parts of the array data.
Array Declarations
There are two ways to declare arrays, prefix and postfix. The prefix form is the preferred method, especially for non-trivial types.
Prefix Array Declarations
Prefix declarations appear before the identifier being declared and read right to left, so:
int[] a; // dynamic array of ints
int[4][3] b; // array of 3 arrays of 4 ints each
int[][5] c; // array of 5 dynamic arrays of ints.
int*[]*[3] d; // array of 3 pointers to dynamic arrays of pointers to ints
int[]* e; // pointer to dynamic array of intsPostfix Array Declarations
Postfix declarations appear after the identifier being declared and read left to right. Each group lists equivalent declarations:
// dynamic array of ints
int[] a;
int a[];
// array of 3 arrays of 4 ints each
int[4][3] b;
int[4] b[3];
int b[3][4];
// array of 5 dynamic arrays of ints.
int[][5] c;
int[] c[5];
int c[5][];
// array of 3 pointers to dynamic arrays of pointers to ints
int*[]*[3] d;
int*[]* d[3];
int* (*d[3])[];
// pointer to dynamic array of ints
int[]* e;
int (*e)[];Rationale: The postfix form matches the way arrays are declared in C and C++, and supporting this form provides an easy migration path for programmers used to it.
Usage
There are two broad kinds of operations to do on an array - affecting the handle to the array, and affecting the contents of the array. C only has operators to affect the handle. In D, both are accessible.
The handle to an array is specified by naming the array, as in p, s or a:
int* p;
int[3] s;
int[] a;
int* q;
int[3] t;
int[] b;
p = q; // p points to the same thing q does.
p = s.ptr; // p points to the first element of the array s.
p = a.ptr; // p points to the first element of the array a.
s = ...; // error, since s is a compiled in static
// reference to an array.
a = p; // error, since the length of the array pointed
// to by p is unknown
a = s; // a is initialized to point to the s array
a = b; // a points to the same array as b doesSlicing
Slicing an array means to specify a subarray of it. An array slice does not copy the data, it is only another reference to it. For example:
int[10] a; // declare array of 10 ints
int[] b;
b = a[1..3]; // a[1..3] is a 2 element array consisting of
// a[1] and a[2]
foo(b[1]); // equivalent to foo(0)
a[2] = 3;
foo(b[1]); // equivalent to foo(3)The [] is shorthand for a slice of the entire array. For example, the assignments to b:
int[10] a;
int[] b;
b = a;
b = a[];
b = a[0 .. a.length];are all semantically equivalent.
Slicing is not only handy for referring to parts of other arrays, but for converting pointers into bounds-checked arrays:
int* p;
int[] b = p[0..8];Array Copying
When the slice operator appears as the lvalue of an assignment expression, it means that the contents of the array are the target of the assignment rather than a reference to the array. Array copying happens when the lvalue is a slice, and the rvalue is an array of or pointer to the same type.
int[3] s;
int[3] t;
s[] = t; // the 3 elements of t[3] are copied into s[3]
s[] = t[]; // the 3 elements of t[3] are copied into s[3]
s[1..2] = t[0..1]; // same as s[1] = t[0]
s[0..2] = t[1..3]; // same as s[0] = t[1], s[1] = t[2]
s[0..4] = t[0..4]; // error, only 3 elements in s
s[0..2] = t; // error, different lengths for lvalue and rvalueOverlapping copies are an error:
s[0..2] = s[1..3]; // error, overlapping copy
s[1..3] = s[0..2]; // error, overlapping copyDisallowing overlapping makes it possible for more aggressive parallel code optimizations than possible with the serial semantics of C.
Array Setting
If a slice operator appears as the lvalue of an assignment expression, and the type of the rvalue is the same as the element type of the lvalue, then the lvalue's array contents are set to the rvalue.
int[3] s;
int* p;
s[] = 3; // same as s[0] = 3, s[1] = 3, s[2] = 3
p[0..2] = 3; // same as p[0] = 3, p[1] = 3Array Concatenation
The binary operator ~ is the cat operator. It is used to concatenate arrays:
int[] a;
int[] b;
int[] c;
a = b ~ c; // Create an array from the concatenation
// of the b and c arraysMany languages overload the + operator to mean concatenation. This confusingly leads to, does:
"10" + 3 + 4produce the number 17, the string "1034" or the string "107" as the result? It isn't obvious, and the language designers wind up carefully writing rules to disambiguate it - rules that get incorrectly implemented, overlooked, forgotten, and ignored. It's much better to have + mean addition, and a separate operator to be array concatenation.
Similarly, the ~= operator means append, as in:
a ~= b; // a becomes the concatenation of a and bConcatenation always creates a copy of its operands, even if one of the operands is a 0 length array, so:
a = b; // a refers to b
a = b ~ c[0..0]; // a refers to a copy of bAppending does not always create a copy, see setting dynamic array length for details.
Array Operations
Many array operations, also known as vector operations, can be expressed at a high level rather than as a loop. For example, the loop:
T[] a, b;
...
for (size_t i = 0; i < a.length; i++)
a[i] = b[i] + 4;assigns to the elements of a the elements of b with 4 added to each. This can also be expressed in vector notation as:
T[] a, b;
...
a[] = b[] + 4;A vector operation is indicated by the slice operator appearing as the lvalue of an =, +=, -=, *=, /=, %=, ^=, &= or |= operator. The rvalue can be an expression consisting either of an array slice of the same length and type as the lvalue or an expression of the element type of the lvalue, in any combination. The operators supported for vector operations are the binary operators +, -, *, /, %, ^, & and |, and the unary operators - and ~.
The lvalue slice and any rvalue slices must not overlap. The vector assignment operators are evaluated right to left, and the other binary operators are evaluated left to right. All operands are evaluated exactly once, even if the array slice has zero elements in it.
The order in which the array elements are computed is implementation defined, and may even occur in parallel. An application must not depend on this order.
Implementation note: many of the more common vector operations are expected to take advantage of any vector math instructions available on the target computer.
Pointer Arithmetic
int[3] abc; // static array of 3 ints
int[] def = [ 1, 2, 3 ]; // dynamic array of 3 ints
void dibb(int* array) {
array[2]; // means same thing as *(array + 2)
*(array + 2); // get 3rd element
}
void diss(int[] array) {
array[2]; // ok
*(array + 2); // error, array is not a pointer
}
void ditt(int[3] array) {
array[2]; // ok
*(array + 2); // error, array is not a pointer
}Rectangular Arrays
Experienced FORTRAN numerics programmers know that multidimensional "rectangular" arrays for things like matrix operations are much faster than trying to access them via pointers to pointers resulting from "array of pointers to array" semantics. For example, the D syntax:
double[][] matrix;declares matrix as an array of pointers to arrays. (Dynamic arrays are implemented as pointers to the array data.) Since the arrays can have varying sizes (being dynamically sized), this is sometimes called "jagged" arrays. Even worse for optimizing the code, the array rows can sometimes point to each other! Fortunately, D static arrays, while using the same syntax, are implemented as a fixed rectangular layout:
double[3][3] matrix;declares a rectangular matrix with 3 rows and 3 columns, all contiguously in memory. In other languages, this would be called a multidimensional array and be declared as:
double matrix[3,3];Array Length
Within the [ ] of a static or a dynamic array, the symbol $ represents the length of the array.
int[4] foo;
int[] bar = foo;
int* p = &foo[0];
// These expressions are equivalent:
bar[]
bar[0 .. 4]
bar[0 .. $]
bar[0 .. bar.length]
p[0 .. $] // '$' is not defined, since p is not an array
bar[0]+$ // '$' is not defined, out of scope of [ ]
bar[$-1] // retrieves last element of the arrayArray Properties
Static array properties are:
Static Array Properties Property Description .init Returns an array literal with each element of the literal being the .init property of the array element type. .sizeof Returns the array length multiplied by the number of bytes per array element. .length Returns the number of elements in the array. This is a fixed quantity for static arrays. It is of type size_t. .ptr Returns a pointer to the first element of the array. .dup Create a dynamic array of the same size and copy the contents of the array into it. .idup Create a dynamic array of the same size and copy the contents of the array into it. The copy is typed as being immutable. D 2.0 only .reverse Reverses in place the order of the elements in the array. Returns the array. .sort Sorts in place the order of the elements in the array. Returns the array.Dynamic array properties are:
Dynamic Array Properties Property Description .init Returns null. .sizeof Returns the size of the dynamic array reference, which is 8 on 32 bit machines. .length Get/set number of elements in the array. It is of type size_t. .ptr Returns a pointer to the first element of the array. .dup Create a dynamic array of the same size and copy the contents of the array into it. .idup Create a dynamic array of the same size and copy the contents of the array into it. The copy is typed as being immutable. D 2.0 only .reverse Reverses in place the order of the elements in the array. Returns the array. .sort Sorts in place the order of the elements in the array. Returns the array.For the .sort property to work on arrays of class objects, the class definition must define the function: int opCmp(Object). This is used to determine the ordering of the class objects. Note that the parameter is of type Object, not the type of the class.
For the .sort property to work on arrays of structs or unions, the struct or union definition must define the function: int opCmp(S) or int opCmp(S*). The type S is the type of the struct or union. This function will determine the sort ordering.
Examples:
int* p;
int[3] s;
int[] a;
p.length; // error, length not known for pointer
s.length; // compile time constant 3
a.length; // runtime value
p.dup; // error, length not known
s.dup; // creates an array of 3 elements, copies
// elements s into it
a.dup; // creates an array of a.length elements, copies
// elements of a into itSetting Dynamic Array Length
The .length property of a dynamic array can be set as the lvalue of an = operator:
array.length = 7;This causes the array to be reallocated in place, and the existing contents copied over to the new array. If the new array length is shorter, the array is not reallocated, and no data is copied. It is equivalent to slicing the array:
array = array[0..7];If the new array length is longer, the remainder is filled out with the default initializer.To maximize efficiency, the runtime always tries to resize the array in place to avoid extra copying. It will always do a copy if the new size is larger and the array was not allocated via the new operator or resizing in place would overwrite valid data in the array.
For example:char[] a = new char[20];
char[] b = a[0..10];
char[] c = a[10..20];
char[] d = a;
b.length = 15; // always reallocates because extending in place would
// overwrite other data in a.
b[11] = 'x'; // a[11] and c[1] are not affected
d.length = 1;
d.length = 20; // also reallocates, because doing this will overwrite a and
// c
c.length = 12; // may reallocate in place if space allows, because nothing
// was allocated after c.
c[5] = 'y'; // may affect contents of a, but not b or d because those
// were reallocated.
a.length = 25; // This always reallocates because if c extended in place,
// then extending a would overwrite c. If c didn't
// reallocate in place, it means there was not enough space,
// which will still be true for a.
a[15] = 'z'; // does not affect c, because either a or c has reallocated.To guarantee copying behavior, use the .dup property to ensure a unique array that can be resized. Also, one may use the phobos .capacity property to determine how many elements can be appended to the array without reallocating.
These issues also apply to appending arrays with the ~= operator. Concatenation using the ~ operator is not affected since it always reallocates.
Resizing a dynamic array is a relatively expensive operation. So, while the following method of filling an array:
int[] array;
while (1) {
c = getinput();
if (!c)
break;
array.length = array.length + 1;
array[array.length - 1] = c;
}will work, it will be inefficient. A more practical approach would be to minimize the number of resizes:
int[] array;
array.length = 100; // guess
for (i = 0; 1; i++) {
c = getinput();
if (!c)
break;
if (i == array.length)
array.length = array.length * 2;
array[i] = c;
}
array.length = i;Picking a good initial guess is an art, but you usually can pick a value covering 99% of the cases. For example, when gathering user input from the console - it's unlikely to be longer than 80.
Also, you may wish to utilize the phobos reserve function to pre-allocate array data to use with the append operator.
Functions as Array Properties
If the first parameter to a function is an array, the function can be called as if it were a property of the array:
int[] array;
void foo(int[] a, int x);
foo(array, 3);
array.foo(3); // means the same thingArray Bounds Checking
It is an error to index an array with an index that is less than 0 or greater than or equal to the array length. If an index is out of bounds, a RangeError exception is raised if detected at runtime, and an error if detected at compile time. A program may not rely on array bounds checking happening, for example, the following program is incorrect:
try {The loop is correctly written:
for (i = 0; ; i++) {
array[i] = 5;
}
}
catch (RangeError) {
// terminate loop
}for (i = 0; i < array.length; i++) {
array[i] = 5;
}Implementation Note: Compilers should attempt to detect array bounds errors at compile time, for example:
int[3] foo;
int x = foo[3]; // error, out of boundsInsertion of array bounds checking code at runtime should be turned on and off with a compile time switch.
Array Initialization
Default Initialization
- Pointers are initialized to null.
- Static array contents are initialized to the default initializer for the array element type.
- Dynamic arrays are initialized to having 0 elements.
- Associative arrays are initialized to having 0 elements.
Void Initialization
Void initialization happens when the Initializer for an array is void. What it means is that no initialization is done, i.e. the contents of the array will be undefined. This is most useful as an efficiency optimization. Void initializations are an advanced technique and should only be used when profiling indicates that it matters.
Static Initialization of Static Arrays
Static initalizations are supplied by a list of array element values enclosed in [ ]. The values can be optionally preceded by an index and a :. If an index is not supplied, it is set to the previous index plus 1, or 0 if it is the first value.
int[3] a = [ 1:2, 3 ]; // a[0] = 0, a[1] = 2, a[2] = 3This is most handy when the array indices are given by enums:
enum Color { red, blue, green };
int value[Color.max + 1] =
[ Color.blue :6,
Color.green:2,
Color.red :5 ];These arrays are static when they appear in global scope. Otherwise, they need to be marked with const or static storage classes to make them static arrays.
Special Array Types
Strings
A string is an array of characters. String literals are just an easy way to write character arrays. String literals are immutable (read only).
char[] str1 = "abc"; // error, "abc" is not mutable
char[] str2 = "abc".dup; // ok, make mutable copy
immutable(char)[] str3 = "abc"; // ok
immutable(char)[] str4 = str1; // error, str4 is not mutable
immutable(char)[] str5 = str1.idup; // ok, make immutable copyThe name string is aliased to immutable(char)[], so the above declarations could be equivalently written as:
char[] str1 = "abc"; // error, "abc" is not mutable
char[] str2 = "abc".dup; // ok, make mutable copy
string str3 = "abc"; // ok
string str4 = str1; // error, str4 is not mutable
string str5 = str1.idup; // ok, make immutable copychar[] strings are in UTF-8 format. wchar[] strings are in UTF-16 format. dchar[] strings are in UTF-32 format.
Strings can be copied, compared, concatenated, and appended:
str1 = str2;
if (str1 < str3) ...
func(str3 ~ str4);
str4 ~= str1;with the obvious semantics. Any generated temporaries get cleaned up by the garbage collector (or by using alloca()). Not only that, this works with any array not just a special String array.
A pointer to a char can be generated:
char* p = &str[3]; // pointer to 4th element
char* p = str; // pointer to 1st elementSince strings, however, are not 0 terminated in D, when transferring a pointer to a string to C, add a terminating 0:
str ~= "\0";or use the function std.string.toStringz.
The type of a string is determined by the semantic phase of compilation. The type is one of: char[], wchar[], dchar[], and is determined by implicit conversion rules. If there are two equally applicable implicit conversions, the result is an error. To disambiguate these cases, a cast or a postfix of c, w or d can be used:
cast(immutable(wchar) [])"abc" // this is an array of wchar characters
"abc"w // so is thisString literals that do not have a postfix character and that have not been cast can be implicitly converted between char[], wchar[], and dchar[] as necessary.
char c;
wchar w;
dchar d;
c = 'b'; // c is assigned the character 'b'
w = 'b'; // w is assigned the wchar character 'b'
w = 'bc'; // error - only one wchar character at a time
w = "b"[0]; // w is assigned the wchar character 'b'
w = "\r"[0]; // w is assigned the carriage return wchar character
d = 'd'; // d is assigned the character 'd'C's printf() and Strings
printf() is a C function and is not part of D. printf() will print C strings, which are 0 terminated. There are two ways to use printf() with D strings. The first is to add a terminating 0, and cast the result to a char*:
str ~= "\0";
printf("the string is '%s'\n", cast(char*)str);or:
import std.string;
printf("the string is '%s'\n", std.string.toStringz(str));String literals already have a 0 appended to them, so can be used directly:
printf("the string is '%s'\n", cast(char*)"string literal");So, why does the first string literal to printf not need the cast? The first parameter is prototyped as a char*, and a string literal can be implicitly cast to a char*. The rest of the arguments to printf, however, are variadic (specified by ...), and a string literal is passed as a (length,pointer) combination to variadic parameters.
The second way is to use the precision specifier. The way D arrays are laid out, the length comes first, so the following works:
printf("the string is '%.*s'\n", str);The best way is to use std.stdio.writefln, which can handle D strings:
import std.stdio;
writefln("the string is '%s'", str);Implicit Conversions
A pointer T* can be implicitly converted to one of the following:
- void*
A static array T[dim] can be implicitly converted to one of the following:
- T[]
- U[]
- void[]
A dynamic array T[] can be implicitly converted to one of the following:
- U[]
- void[]
Where U is a base class of T.
Associative Arrays
Associative arrays have an index that is not necessarily an integer, and can be sparsely populated. The index for an associative array is called the key, and its type is called the KeyType.
Associative arrays are declared by placing the KeyType within the [] of an array declaration:
int[char[]] b; // associative array b of ints that are
// indexed by an array of characters.
// The KeyType is char[]
b["hello"] = 3; // set value associated with key "hello" to 3
func(b["hello"]); // pass 3 as parameter to func()Particular keys in an associative array can be removed with the remove function:
b.remove("hello");The InExpression yields a pointer to the value if the key is in the associative array, or null if not:
int* p;
p = ("hello" in b);
if (p != null)
...KeyTypes cannot be functions or voids.
Using Classes as the KeyType
Classes can be used as the KeyType. For this to work, the class definition must override the following member functions of class Object:
- hash_t toHash()
- bool opEquals(Object)
- int opCmp(Object)
hash_t is an alias to an integral type.
Note that the parameter to opCmp and opEquals is of type Object, not the type of the class in which it is defined.
For example:
class Foo {
int a, b;
hash_t toHash() { return a + b; }
bool opEquals(Object o) {
Foo foo = cast(Foo) o;
return foo && a == foo.a && b == foo.b;
}
int opCmp(Object o) {
Foo foo = cast(Foo) o;
if (!foo)
return -1;
if (a == foo.a)
return b - foo.b;
return a - foo.a;
}
}The implementation may use either opEquals or opCmp or both. Care should be taken so that the results of opEquals and opCmp are consistent with each other when the class objects are the same or not.
Using Structs or Unions as the KeyType
If the KeyType is a struct or union type, a default mechanism is used to compute the hash and comparisons of it based on the binary data within the struct value. A custom mechanism can be used by providing the following functions as struct members:
const hash_t toHash();
const bool opEquals(ref const KeyType s);
const int opCmp(ref const KeyType s);For example:
import std.string;
struct MyString {
string str;
const hash_t toHash() {
hash_t hash;
foreach (char c; str)
hash = (hash * 9) + c;
return hash;
}
const bool opEquals(ref const MyString s) {
return std.string.cmp(this.str, s.str) == 0;
}
const int opCmp(ref const MyString s) {
return std.string.cmp(this.str, s.str);
}
}The implementation may use either opEquals or opCmp or both. Care should be taken so that the results of opEquals and opCmp are consistent with each other when the struct/union objects are the same or not.
Properties
Properties for associative arrays are:
Associative Array Properties Property Description .sizeof Returns the size of the reference to the associative array; it is typically 8. .length Returns number of values in the associative array. Unlike for dynamic arrays, it is read-only. .keys Returns dynamic array, the elements of which are the keys in the associative array. .values Returns dynamic array, the elements of which are the values in the associative array. .rehash Reorganizes the associative array in place so that lookups are more efficient. rehash is effective when, for example, the program is done loading up a symbol table and now needs fast lookups in it. Returns a reference to the reorganized array. .byKey() Returns a delegate suitable for use as an Aggregate to a ForeachStatement which will iterate over the keys of the associative array. .byValue() Returns a delegate suitable for use as an Aggregate to a ForeachStatement which will iterate over the values of the associative array. .get(Key key, lazy Value defaultValue) Looks up key; if it exists returns corresponding value else evaluates and returns defaultValue.
Associative Array Example: word count
import std.file; // D file I/O
import std.stdio;
int main (string[] args) {
int word_total;
int line_total;
int char_total;
int[char[]] dictionary;
writefln(" lines words bytes file");
for (int i = 1; i < args.length; ++i) // program arguments
{
char[] input; // input buffer
int w_cnt, l_cnt, c_cnt; // word, line, char counts
int inword;
int wstart;
// read file into input[]
input = cast(char[])std.file.read(args[i]);
foreach (j, char c; input)
{
if (c == '\n')
++l_cnt;
if (c >= '0' && c <= '9')
{
}
else if (c >= 'a' && c <= 'z' ||
c >= 'A' && c <= 'Z')
{
if (!inword)
{
wstart = j;
inword = 1;
++w_cnt;
}
}
else if (inword)
{
char[] word = input[wstart .. j];
dictionary[word]++; // increment count for word
inword = 0;
}
++c_cnt;
}
if (inword)
{
char[] word = input[wstart .. input.length];
dictionary[word]++;
}
writefln("%8d%8d%8d %s", l_cnt, w_cnt, c_cnt, args[i]);
line_total += l_cnt;
word_total += w_cnt;
char_total += c_cnt;
}
if (args.length > 2)
{
writef("-------------------------------------\n%8d%8d%8d total",
line_total, word_total, char_total);
}
writefln("-------------------------------------");
foreach (word; dictionary.keys.sort)
{
writefln("%3d %s", dictionary[word], word);
}
return 0;
}
Associative Arrays
Associative arrays have an index that is not necessarily an integer, and can be sparsely populated. The index for an associative array is called the key, and its type is called the KeyType.
Associative arrays are declared by placing the KeyType within the [ ] of an array declaration:
int[char[]] b; // associative array b of ints that are
// indexed by an array of characters.
// The KeyType is char[]
b["hello"] = 3; // set value associated with key "hello" to 3
func(b["hello"]); // pass 3 as parameter to func()Particular keys in an associative array can be removed with the remove function:
b.remove("hello");The InExpression yields a pointer to the value if the key is in the associative array, or null if not:
int* p;
p = ("hello" in b);
if (p != null)
...KeyTypes cannot be functions or voids.
The element types of an associative array cannot be functions or voids.
Using Classes as the KeyType
Classes can be used as the KeyType. For this to work, the class definition must override the following member functions of class Object:
- hash_t toHash()
- bool opEquals(Object)
- int opCmp(Object)
hash_t is an alias to an integral type.
Note that the parameter to opCmp and opEquals is of type Object, not the type of the class in which it is defined.
For example:
class Foo {
int a, b;
hash_t toHash() { return a + b; }
bool opEquals(Object o)
{ Foo f = cast(Foo) o;
return f && a == foo.a && b == foo.b;
}
int opCmp(Object o)
{ Foo f = cast(Foo) o;
if (!f)
return -1;
if (a == foo.a)
return b - foo.b;
return a - foo.a;
}
}The implementation may use either opEquals or opCmp or both. Care should be taken so that the results of opEquals and opCmp are consistent with each other when the class objects are the same or not.
Using Structs or Unions as the KeyType
If the KeyType is a struct or union type, a default mechanism is used to compute the hash and comparisons of it based on the binary data within the struct value. A custom mechanism can be used by providing the following functions as struct members:
const hash_t toHash();
const bool opEquals(ref const KeyType s);
const int opCmp(ref const KeyType s);For example:
import std.string;
struct MyString {
string str;
const hash_t toHash()
{ hash_t hash;
foreach (char c; s)
hash = (hash * 9) + c;
return hash;
}
const bool opEquals(ref const MyString s)
{
return std.string.cmp(this.str, s.str) == 0;
}
const int opCmp(ref const MyString s)
{
return std.string.cmp(this.str, s.str);
}
}The implementation may use either opEquals or opCmp or both. Care should be taken so that the results of opEquals and opCmp are consistent with each other when the struct/union objects are the same or not.
Properties
Properties for associative arrays are:
Associative Array Properties Property Description .sizeof Returns the size of the reference to the associative array; it is typically 8. .length Returns number of values in the associative array. Unlike for dynamic arrays, it is read-only. .keys Returns dynamic array, the elements of which are the keys in the associative array. .values Returns dynamic array, the elements of which are the values in the associative array. .rehash Reorganizes the associative array in place so that lookups are more efficient. rehash is effective when, for example, the program is done loading up a symbol table and now needs fast lookups in it. Returns a reference to the reorganized array. .byKey() Returns a delegate suitable for use as an Aggregate to a ForeachStatement which will iterate over the keys of the associative array. .byValue() Returns a delegate suitable for use as an Aggregate to a ForeachStatement which will iterate over the values of the associative array. .get(Key key, lazy Value defaultValue) Looks up key; if it exists returns corresponding value else evaluates and returns defaultValue.
Associative Array Example: word count
import std.file; // D file I/O
import std.stdio;
int main (string[] args) {
int word_total;
int line_total;
int char_total;
int[char[]] dictionary;
writefln(" lines words bytes file");
for (int i = 1; i < args.length; ++i) // program arguments
{
char[] input; // input buffer
int w_cnt, l_cnt, c_cnt; // word, line, char counts
int inword;
int wstart;
// read file into input[]
input = cast(char[])std.file.read(args[i]);
foreach (j, char c; input)
{
if (c == '\n')
++l_cnt;
if (c >= '0' && c <= '9')
{
}
else if (c >= 'a' && c <= 'z' ||
c >= 'A' && c <= 'Z')
{
if (!inword)
{
wstart = j;
inword = 1;
++w_cnt;
}
}
else if (inword)
{
char[] word = input[wstart .. j];
dictionary[word]++; // increment count for word
inword = 0;
}
++c_cnt;
}
if (inword)
{
char[] word = input[wstart .. input.length];
dictionary[word]++;
}
writefln("%8d%8d%8d %s", l_cnt, w_cnt, c_cnt, args[i]);
line_total += l_cnt;
word_total += w_cnt;
char_total += c_cnt;
}
if (args.length > 2)
{
writef("-------------------------------------\n%8d%8d%8d total",
line_total, word_total, char_total);
}
writefln("-------------------------------------");
foreach (word; dictionary.keys.sort)
{
writefln("%3d %s", dictionary[word], word);
}
return 0;
}
Structs & Unions
Whereas classes are reference types, structs are value types. Any C struct can be exactly represented as a D struct. In C++ parlance, a D struct is a POD (Plain Old Data) type, with a trivial constructors and destructors. Structs and unions are meant as simple aggregations of data, or as a way to paint a data structure over hardware or an external type. External types can be defined by the operating system API, or by a file format. Object oriented features are provided with the class data type.
A struct is defined to not have an identity; that is, the implementation is free to make bit copies of the struct as convenient.
Struct, Class Comparison Table Feature struct class C struct C++ struct C++ class value type Yes No Yes Yes Yes reference type No Yes No No No data members Yes Yes Yes Yes Yes hidden members Yes Yes No Yes Yes static members Yes Yes No Yes Yes default member initializers Yes Yes No No No bit fields No No Yes Yes Yes non-virtual member functions Yes Yes No Yes Yes virtual member functions No Yes No Yes Yes constructors Yes Yes No Yes Yes postblit/copy constructors Yes No No Yes Yes destructors Yes Yes No Yes Yes SharedStaticConstructors Yes Yes No No No SharedStaticDestructors Yes Yes No No No RAII Yes Yes No Yes Yes assign overload Yes No No Yes Yes literals Yes No No No No operator overloading Yes Yes No Yes Yes inheritance No Yes No Yes Yes invariants Yes Yes No No No unit tests Yes Yes No No No synchronizable No Yes No No No parameterizable Yes Yes No Yes Yes alignment control Yes Yes No No No member protection Yes Yes No Yes Yes default public Yes Yes Yes Yes No tag name space No No Yes Yes Yes anonymous Yes No Yes Yes Yes static constructor Yes Yes No No No static destructor Yes Yes No No No const/immutable/shared Yes Yes No No No inner nesting YES YES No No NoAggregateDeclaration:
struct Identifier StructBody
union Identifier StructBody
struct Identifier ;
union Identifier ;
StructTemplateDeclaration
UnionTemplateDeclaration
StructBody:
{ }
{ StructBodyDeclarations }
StructBodyDeclarations:
StructBodyDeclaration
StructBodyDeclaration StructBodyDeclarations
StructBodyDeclaration:
DeclDef
StructAllocator
StructDeallocator
StructPostblit
AliasThis
StructAllocator:
ClassAllocator
StructDeallocator:
ClassDeallocatorThey work like they do in C, with the following exceptions:
- no bit fields
- alignment can be explicitly specified
- no separate tag name space - tag names go into the current scope
- declarations like:
struct ABC x;are not allowed, replace with:ABC x;- anonymous structs/unions are allowed as members of other structs/unions
- Default initializers for members can be supplied.
- Member functions and static members are allowed.
Static Initialization of Structs
Static struct members are by default initialized to whatever the default initializer for the member is, and if none supplied, to the default initializer for the member's type. If a static initializer is supplied, the members are initialized by the member name, colon, expression syntax. The members may be initialized in any order. Initializers for statics must be evaluatable at compile time. Members not specified in the initializer list are default initialized.struct S { int a; int b; int c; int d = 7;}C-style initialization, based on the order of the members in the struct declaration, is also supported:
static S x = { a:1, b:2}; // c is set to 0, d to 7
static S z = { c:4, b:5, a:2 , d:5}; // z.a = 2, z.b = 5, z.c = 4, z.d = 5static S q = { 1, 2 }; // q.a = 1, q.b = 2, q.c = 0, q.d = 7Struct literals can also be used to initialize statics, but they must be evaluable at compile time.
static S q = S( 1, 2+3 ); // q.a = 1, q.b = 5, q.c = 0, q.d = 7The static initializer syntax can also be used to initialize non-static variables, provided that the member names are not given. The initializer need not be evaluatable at compile time.
void test(int i) {
S s = { 1, i }; // q.a = 1, q.b = i, q.c = 0, q.d = 7
}Static Initialization of Unions
Unions are initialized explicitly.union U { int a; double b; }Other members of the union that overlay the initializer, but occupy more storage, have the extra storage initialized to zero.
static U u = { b : 5.0 }; // u.b = 5.0Dynamic Initialization of Structs
Structs can be dynamically initialized from another value of the same type:
struct S { int a; }
S t; // default initialized
t.a = 3;
S s = t; // s.a is set to 3If opCall is overridden for the struct, and the struct is initialized with a value that is of a different type, then the opCall operator is called:
struct S {
int a;
static S opCall(int v)
{ S s;
s.a = v;
return s;
}
static S opCall(S v)
{ S s;
s.a = v.a + 1;
return s;
}
}
S s = 3; // sets s.a to 3
S t = s; // sets t.a to 3, S.opCall(s) is not calledStruct Literals
Struct literals consist of the name of the struct followed by a parenthesized argument list:
struct S { int x; float y; }
int foo(S s) { return s.x; }
foo( S(1, 2) ); // set field x to 1, field y to 2Struct literals are syntactically like function calls. If a struct has a member function named opCall, then struct literals for that struct are not possible. It is an error if there are more arguments than fields of the struct. If there are fewer arguments than fields, the remaining fields are initialized with their respective default initializers. If there are anonymous unions in the struct, only the first member of the anonymous union can be initialized with a struct literal, and all subsequent non-overlapping fields are default initialized.
Struct Properties
Struct Properties .sizeof Size in bytes of struct .alignof Size boundary struct needs to be aligned on .tupleof Gets type tuple of fieldsStruct Field Properties
Struct Field Properties .offsetof Offset in bytes of field from beginning of structConst and Invariant Structs
A struct declaration can have a storage class of const, immutable or shared. It has an equivalent effect as declaring each member of the struct as const, immutable or shared.
const struct S { int a; int b = 2; }
void main() {
S s = S(3); // initializes s.a to 3
S t; // initializes t.a to 0
t = s; // ok, t.a is now 3
t.a = 4; // error, t.a is const
}Struct Constructors
Struct constructors are used to initialize an instance of a struct. The ParameterList may not be empty. Struct instances that are not instantiated with a constructor are default initialized to their .init value.
struct S {
int x, y;
this() // error, cannot implement default ctor for structs
{
}
this(int a, int b)
{
x = a;
y = b;
}
}
void main()
{
S a = S(4, 5);
auto b = S(); // same as auto b = S.init;
}Struct Postblits
Copy construction is defined as initializing a struct instance from another struct of the same type. Copy construction is divided into two parts:
- blitting the fields, i.e. copying the bits
- running postblit on the result
The first part is done automatically by the language, the second part is done if a postblit function is defined for the struct. The postblit has access only to the destination struct object, not the source. Its job is to ‘fix up’ the destination as necessary, such as making copies of referenced data, incrementing reference counts, etc. For example:
struct S {
int[] a; // array is privately owned by this instance
this(this) {
a = a.dup;
}
~this() {
delete a;
}
}Struct Destructors
Destructors are called when an object goes out of scope. Their purpose is to free up resources owned by the struct object.
Assignment Overload
While copy construction takes care of initializing an object from another object of the same type, assignment is defined as copying the contents of one object over another, already initialized, type:
struct S { ... }
S s; // default construction of s
S t = s; // t is copy-constructed from s
t = s; // t is assigned from sStruct assignment t=s is defined to be semantically equivalent to:
t = S.opAssign(s);where opAssign is a member function of S:
S* opAssign(S s)
{ ... bitcopy *this into tmp ...
... bitcopy s into *this ...
... call destructor on tmp ...
return this;
}While the compiler will generate a default opAssign as needed, a user-defined one can be supplied. The user-defined one must still implement the equivalent semantics, but can be more efficient.
One reason a custom opAssign might be more efficient is if the struct has a reference to a local buffer:
struct S {
int[] buf;
int a;
S* opAssign(ref const S s) {
a = s.a;
return this;
}
this(this) {
buf = buf.dup;
}
~this() {
delete buf;
}
}Here, S has a temporary workspace buf[]. The normal postblit will pointlessly free and reallocate it. The custom opAssign will reuse the existing storage.
Nested Structs
A nested struct is a struct that is declared inside the scope of a function or a templated struct that has aliases to local functions as a template argument. Nested structs have member functions. It has access to the context of its enclosing scope (via an added hidden field).
void foo() {
int i = 7;
struct SS {
int x,y;
int bar() { return x + i + 1; }
}
SS s;
s.x = 3;
s.bar(); // returns 11
}Nested structs cannot be used as fields or as the element type of an array:
void foo() {
int i = 7;
struct SS {
int x,y;
int bar() { return x + i + 1; }
}
struct DD {
SS s; // error, cannot be field
}
SS[3] a; // error, cannot be array element
SS[] a; // error, cannot be array element
}A struct can be prevented from being nested by using the static attribute, but then of course it will not be able to access variables from its enclosing scope.
void foo() {
int i = 7;
static struct SS {
int x,y;
int bar() {
return i; // error, SS is not a nested struct
}
}
}A templated struct can become a nested struct if it has a local function passed as an aliased argument:
struct A(alias F) {
int fun(int i) { return F(i); }
}
A!(F) makeA(alias F)() {return A!(F)(); }
void main() {
int x = 40;
int fun(int i) { return x + i; }
A!(fun) a = makeA!(fun)();
a.fun(2);
}
Classes
The object-oriented features of D all come from classes. The class hierarchy has as its root the class Object. Object defines a minimum level of functionality that each derived class has, and a default implementation for that functionality.
Classes are programmer defined types. Support for classes are what make D an object oriented language, giving it encapsulation, inheritance, and polymorphism. D classes support the single inheritance paradigm, extended by adding support for interfaces. Class objects are instantiated by reference only.
A class can be exported, which means its name and all its non-private members are exposed externally to the DLL or EXE.
A class declaration is defined:
ClassDeclaration:Classes consist of:
class Identifier BaseClassList ClassBody
ClassTemplateDeclaration
BaseClassList:
Empty
: SuperClass
: SuperClass , InterfaceClasses
: InterfaceClass
SuperClass:
Identifier
Protection Identifier
InterfaceClasses:
InterfaceClass
InterfaceClass , InterfaceClasses
InterfaceClass:
Identifier
Protection Identifier
Protection:
private
package
public
export
ClassBody:
{ }
{ ClassBodyDeclarations }
ClassBodyDeclarations:
ClassBodyDeclaration
ClassBodyDeclaration ClassBodyDeclarations
ClassBodyDeclaration:
DeclDef
Invariant
ClassAllocator
ClassDeallocatorA class is defined:
- a super class
- interfaces
- dynamic fields
- static fields
- types
- member functions
class Foo {Note that there is no trailing ; after the closing } of the class definition. It is also not possible to declare a variable var like:
... members ...
}class Foo { } var;Instead:class Foo { }
Foo var;Fields
Class members are always accessed with the . operator. There are no :: or -> operators as in C++.
The D compiler is free to rearrange the order of fields in a class to optimally pack them in an implementation-defined manner. Consider the fields much like the local variables in a function - the compiler assigns some to registers and shuffles others around all to get the optimal stack frame layout. This frees the code designer to organize the fields in a manner that makes the code more readable rather than being forced to organize it according to machine optimization rules. Explicit control of field layout is provided by struct/union types, not classes.
Field Properties
The .offsetof property gives the offset in bytes of the field from the beginning of the class instantiation. .offsetof can only be applied to expressions which produce the type of the field itself, not the class type:
class Foo {
int x;
}
...
void test(Foo foo) {
size_t o;
o = Foo.x.offsetof; // error, Foo.x needs a 'this' reference
o = foo.x.offsetof; // ok
}Class Properties
The .tupleof property returns an ExpressionTuple of all the fields in the class, excluding the hidden fields and the fields in the base class.
class Foo { int x; long y; }
void test(Foo foo) {
foo.tupleof[0] = 1; // set foo.x to 1
foo.tupleof[1] = 2; // set foo.y to 2
foreach (x; foo.tupleof)
writef(x); // prints 12
}The properties .__vptr and .__monitor give access to the class object's vtbl[] and monitor, respectively, but should not be used in user code.
Super Class
All classes inherit from a super class. If one is not specified, it inherits from Object. Object forms the root of the D class inheritance hierarchy.Member Functions
Non-static member functions have an extra hidden parameter called this through which the class object's other members can be accessed.
Synchronized Functions
Synchronized class member functions have the storage class synchronized. A static member function is synchronized on the classinfo object for the class, which means that one monitor is used for all static synchronized member functions for that class. For non-static synchronized functions, the monitor used is part of the class object. For example:
class Foo {
synchronized void bar() { ...statements... }
}is equivalent to (as far as the monitors go):
class Foo {
void bar() {
synchronized (this) { ...statements... }
}
}Structs do not have synchronized member functions.
Constructors
Members are always initialized to the default initializer for their type, which is usually 0 for integer types and NAN for floating point types. This eliminates an entire class of obscure problems that come from neglecting to initialize a member in one of the constructors. In the class definition, there can be a static initializer to be used instead of the default:
class Abc {This static initialization is done before any constructors are called.
int a; // default initializer for a is 0
long b = 7; // default initializer for b is 7
float f; // default initializer for f is NAN
}Constructors are defined with a function name of this and having no return value:
class Foo {Base class construction is done by calling the base class constructor by the name super:
this(int x) // declare constructor for Foo
{ ...
}
this()
{ ...
}
}class A { this(int y) { } }
class B : A {
int j;
this() {
...
super(3); // call base constructor A.this(3)
...
}
}Constructors can also call other constructors for the same class in order to share common initializations (this is called delegating constructors):
class C {If no call to constructors via this or super appear in a constructor, and the base class has a constructor, a call to super() is inserted at the beginning of the constructor.
int j;
this() {
...
}
this(int i) {
this();
j = i;
}
}If there is no constructor for a class, but there is a constructor for the base class, a default constructor of the form:
this() { }is implicitly generated.
Class object construction is very flexible, but some restrictions apply:
- It is illegal for constructors to mutually call each other:
this() { this(1); }
this(int i) { this(); } // illegal, cyclic constructor calls- If any constructor call appears inside a constructor, any path through the constructor must make exactly one constructor call:
this() { a || super(); } // illegal
this() { (a) ? this(1) : super(); } // ok
this() {
for (...) {
super(); // illegal, inside loop
}
}- It is illegal to refer to this implicitly or explicitly prior to making a constructor call.
- Constructor calls cannot appear after labels (in order to make it easy to check for the previous conditions in the presence of goto's).
Instances of class objects are created with NewExpressions:
A a = new A(3);The following steps happen:
- Storage is allocated for the object. If this fails, rather than return null, an OutOfMemoryError is thrown. Thus, tedious checks for null references are unnecessary.
- The raw data is statically initialized using the values provided in the class definition. The pointer to the vtbl[] (the array of pointers to virtual functions) is assigned. This ensures that constructors are passed fully formed objects for which virtual functions can be called. This operation is equivalent to doing a memory copy of a static version of the object onto the newly allocated one, although more advanced compilers may be able to optimize much of this away.
- If there is a constructor defined for the class, the constructor matching the argument list is called.
- If class invariant checking is turned on, the class invariant is called at the end of the constructor.
Destructors
The garbage collector calls the destructor function when the object is deleted. The syntax is:class Foo {
~this() // destructor for Foo
{
}
}There can be only one destructor per class, the destructor does not have any parameters, and has no attributes. It is always virtual.
The destructor is expected to release any resources held by the object.
The program can explicitly inform the garbage collector that an object is no longer referred to (with the delete expression), and then the garbage collector calls the destructor immediately, and adds the object's memory to the free storage. The destructor is guaranteed to never be called twice.
The destructor for the super class automatically gets called when the destructor ends. There is no way to call the super destructor explicitly.
The garbage collector is not guaranteed to run the destructor for all unreferenced objects. Furthermore, the order in which the garbage collector calls destructors for unreference objects is not specified. This means that when the garbage collector calls a destructor for an object of a class that has members that are references to garbage collected objects, those references may no longer be valid. This means that destructors cannot reference sub objects. This rule does not apply to auto objects or objects deleted with the DeleteExpression, as the destructor is not being run by the garbage collector, meaning all references are valid.
Objects referenced from the data segment never get collected by the gc.
Static Constructors
A static constructor is defined as a function that performs initializations before the main() function gets control. Static constructors are used to initialize static class members with values that cannot be computed at compile time.Static constructors in other languages are built implicitly by using member initializers that can't be computed at compile time. The trouble with this stems from not having good control over exactly when the code is executed, for example:
class Foo {What values do a and b end up with, what order are the initializations executed in, what are the values of a and b before the initializations are run, is this a compile error, or is this a runtime error? Additional confusion comes from it not being obvious if an initializer is static or dynamic.
static int a = b + 1;
static int b = a * 2;
}D makes this simple. All member initializations must be determinable by the compiler at compile time, hence there is no order-of-evaluation dependency for member initializations, and it is not possible to read a value that has not been initialized. Dynamic initialization is performed by a static constructor, defined with a special syntax static this().
class Foo {static this() is called by the startup code before main() is called. If it returns normally (does not throw an exception), the static destructor is added to the list of functions to be called on program termination. Static constructors have empty parameter lists.
static int a; // default initialized to 0
static int b = 1;
static int c = b + a; // error, not a constant initializer
static this() // static constructor
{
a = b + 1; // a is set to 2
b = a * 2; // b is set to 4
}
}Static constructors within a module are executed in the lexical order in which they appear. All the static constructors for modules that are directly or indirectly imported are executed before the static constructors for the importer.
The static in the static constructor declaration is not an attribute, it must appear immediately before the this:
class Foo {
static this() { ... } // a static constructor
static private this() { ... } // not a static constructor
static {
this() { ... } // not a static constructor
}
static:
this() { ... } // not a static constructor
}Static Destructors
A static destructor is defined as a special static function with the syntax static ~this().class Foo {A static destructor gets called on program termination, but only if the static constructor completed successfully. Static destructors have empty parameter lists. Static destructors get called in the reverse order that the static constructors were called in.
static ~this() // static destructor
{
}
}The static in the static destructor declaration is not an attribute, it must appear immediately before the ~this:
class Foo {
static ~this() { ... } // a static destructor
static private ~this() { ... } // not a static destructor
static
{
~this() { ... } // not a static destructor
}
static:
~this() { ... } // not a static destructor
}Shared Static Constructors
Shared static constructors are executed before any StaticConstructors, and are intended for initializing any shared global data.
Shared Static Destructors
Shared static destructors are executed at program termination in the reverse order that SharedStaticConstructors were executed.
Class Invariants
Class invariants are used to specify characteristics of a class that always must be true (except while executing a member function). For example, a class representing a date might have an invariant that the day must be 1..31 and the hour must be 0..23:class Date {
int day;
int hour;
invariant() {
assert(1 <= day && day <= 31);
assert(0 <= hour && hour < 24);
}
}The class invariant is a contract saying that the asserts must hold true. The invariant is checked when a class constructor completes, at the start of the class destructor, before a public or exported member is run, and after a public or exported function finishes.
The code in the invariant may not call any public non-static members of the class, either directly or indirectly. Doing so will result in a stack overflow, as the invariant will wind up being called in an infinitely recursive manner.
Since the invariant is called at the start of public or exported members, such members should not be called from constructors.
class Foo {The invariant can be checked when a class object is the argument to an
public void f() { }
private void g() { }
invariant() {
f(); // error, cannot call public member function from invariant
g(); // ok, g() is not public
}
}assert()
expression, as:Date mydate;Invariants contain assert expressions, and so when they fail, they throw a AssertErrors. Class invariants are inherited, that is, any class invariant is implicitly anded with the invariants of its base classes.
...
assert(mydate); // check that class Date invariant holdsThere can be only one Invariant per class.
When compiling for release, the invariant code is not generated, and the compiled program runs at maximum speed.
Class Allocators
A class member function of the form:new(uint size) {is called a class allocator. The class allocator can have any number of parameters, provided the first one is of type uint. Any number can be defined for a class, the correct one is determined by the usual function overloading rules. When a new expression:
...
}new Foo;is executed, and Foo is a class that has an allocator, the allocator is called with the first argument set to the size in bytes of the memory to be allocated for the instance. The allocator must allocate the memory and return it as a void*. If the allocator fails, it must not return a null, but must throw an exception. If there is more than one parameter to the allocator, the additional arguments are specified within parentheses after the new in the NewExpression:class Foo {
this(char[] a) { ... }
new(uint size, int x, int y) {
...
}
}
...
new(1,2) Foo(a); // calls new(Foo.sizeof,1,2)Derived classes inherit any allocator from their base class, if one is not specified.
The class allocator is not called if the instance is created on the stack.
See also Explicit Class Instance Allocation.
Class Deallocators
A class member function of the form:delete(void *p) {is called a class deallocator. The deallocator must have exactly one parameter of type void*. Only one can be specified for a class. When a delete expression:
...
}delete f;is executed, and f is a reference to a class instance that has a deallocator, the deallocator is called with a pointer to the class instance after the destructor (if any) for the class is called. It is the responsibility of the deallocator to free the memory.
Derived classes inherit any deallocator from their base class, if one is not specified.
The class allocator is not called if the instance is created on the stack.
See also Explicit Class Instance Allocation.
Alias This
An AliasThis declaration names another class or struct member to which any undefined lookups will be forwarded. The Identifier names that member.
A class or struct can be implicitly converted to the AliasThis member.
There is only one AliasThis allowed per class or struct.
struct S {
int x;
alias x this;
}
int foo(int i) { return i * 2; }
void test() {
S s;
s.x = 7;
int i = -s; // i == -7
i = s + 8; // i == 15
i = s + s; // i == 14
i = 9 + s; // i == 16
i = foo(s); // implicit conversion to int
}Scope Classes
A scope class is a class with the scope attribute, as in:scope class Foo { ... }The scope characteristic is inherited, so if any classes derived from a scope class are also scope.An scope class reference can only appear as a function local variable. It must be declared as being scope:
scope class Foo { ... }When an scope class reference goes out of scope, the destructor (if any) for it is automatically called. This holds true even if the scope was exited via a thrown exception.
void func() {
Foo f; // error, reference to scope class must be scope
scope Foo g = new Foo(); // correct
}Final Classes
Final classes cannot be subclassed:
final class A { }
class B : A { } // error, class A is finalNested Classes
A nested class is a class that is declared inside the scope of a function or another class. A nested class has access to the variables and other symbols of the classes and functions it is nested inside:class Outer {If a nested class has the static attribute, then it can not access variables of the enclosing scope that are local to the stack or need a this:
int m;
class Inner {
int foo() {
return m; // Ok to access member of Outer
}
}
}
void func() {
int m;
class Inner {
int foo() {
return m; // Ok to access local variable m of func()
}
}
}class Outer {Non-static nested classes work by containing an extra hidden member (called the context pointer) that is the frame pointer of the enclosing function if it is nested inside a function, or the this of the enclosing class's instance if it is nested inside a class.
int m;
static int n;
static class Inner {
int foo() {
return m; // Error, Inner is static and m needs a this
return n; // Ok, n is static
}
}
}
void func() {
int m;
static int n;
static class Inner {
int foo() {
return m; // Error, Inner is static and m is local to the stack
return n; // Ok, n is static
}
}
}When a non-static nested class is instantiated, the context pointer is assigned before the class's constructor is called, therefore the constructor has full access to the enclosing variables. A non-static nested class can only be instantiated when the necessary context pointer information is available:
class Outer {While a non-static nested class can access the stack variables of its enclosing function, that access becomes invalid once the enclosing function exits:
class Inner { }
static class SInner { }
}
void func() {
class Nested { }
Outer o = new Outer; // Ok
Outer.Inner oi = new Outer.Inner; // Error, no 'this' for Outer
Outer.SInner os = new Outer.SInner; // Ok
Nested n = new Nested; // Ok
}class Base {If this kind of functionality is needed, the way to make it work is to make copies of the needed variables within the nested class's constructor:
int foo() { return 1; }
}
Base func() {
int m = 3;
class Nested : Base {
int foo() { return m; }
}
Base b = new Nested;
assert(b.foo() == 3); // Ok, func() is still active
return b;
}
int test() {
Base b = func();
return b.foo(); // Error, func().m is undefined
}class Base {
int foo() { return 1; }
}
Base func() {
int m = 3;
class Nested : Base {
int m_;
this() { m_ = m; }
int foo() { return m_; }
}
Base b = new Nested;
assert(b.foo() == 3); // Ok, func() is still active
return b;
}
int test() {
Base b = func();
return b.foo(); // Ok, using cached copy of func().m
}A this can be supplied to the creation of an inner class instance by prefixing it to the NewExpression:
class Outer {
int a;
class Inner {
int foo() {
return a;
}
}
}
int bar() {
Outer o = new Outer;
o.a = 3;
Outer.Inner oi = o.new Inner;
return oi.foo(); // returns 3
}Here o supplies the this to the outer class instance of Outer.
The property .outer used in a nested class gives the this pointer to its enclosing class. If the enclosing context is not a class, the .outer will give the pointer to it as a void* type.
class Outer {
class Inner {
Outer foo() {
return this.outer;
}
}
void bar() {
Inner i = new Inner;
assert(this == i.foo());
}
}
void test() {
Outer o = new Outer;
o.bar();
}Anonymous Nested Classes
An anonymous nested class is both defined and instantiated with a NewAnonClassExpression:
NewAnonClassExpression:
new ParenArgumentListopt class ParenArgumentListopt SuperClassopt InterfaceClassesopt ClassBody
ParenArgumentList:
( ArgumentList )which is equivalent to:
class Identifier : SuperClass InterfaceClasses
ClassBody
new (ArgumentList) Identifier (ArgumentList);where Identifier is the name generated for the anonymous nested class.
Const
Immutable and Shared Classes,If a ClassDeclaration has a const, immutable or shared storage class, then it is as if each member of the class was declared with that storage class. If a base class is const, immutable or shared, then all classes derived from it are also const, immutable or shared.
Interfaces
InterfaceDeclaration:
interface Identifier BaseInterfaceList InterfaceBody
InterfaceTemplateDeclaration
BaseInterfaceList:
Empty
: InterfaceClasses
InterfaceBody:
{ }
{ InterfaceBodyDeclarations }
InterfaceBodyDeclarations:
InterfaceBodyDeclaration
InterfaceBodyDeclaration InterfaceBodyDeclarations
InterfaceBodyDeclaration:
{ DeclDef }Interfaces describe a list of functions that a class that inherits from the interface must implement. A class that implements an interface can be converted to a reference to that interface.
Some operating system objects, like COM/OLE/ActiveX for Win32, have specialized interfaces. D interfaces that are compatible with COM/OLE/ActiveX are called COM Interfaces.
C++ Interfaces are another form of interfaces, meant to be binary compatible with C++.
Interfaces cannot derive from classes; only from other interfaces. Classes cannot derive from an interface multiple times.
interface DAn instance of an interface cannot be created.
{
void foo();
}
class A : D, D // error, duplicate interface
{
}interface D
{
void foo();
}
...
D d = new D(); // error, cannot create instance of interfaceVirtual interface member functions do not have implementations. Interfaces are expected to implement static or final functions.
interface D
{
void bar() { } // error, implementation not allowed
static void foo() { } // ok
final void abc() { } // ok
}Classes that inherit from an interface may not override final or static interface member functions.
interface D {
void bar();
static void foo() { }
final void abc() { }
}
class C : D {
void bar() { } // ok
void foo() { } // error, cannot override static D.foo()
void abc() { } // error, cannot override final D.abc()
}All interface functions must be defined in a class that inherits from that interface:
interface DInterfaces can be inherited and functions overridden:
{
void foo();
}
class A : D
{
void foo() { } // ok, provides implementation
}
class B : D
{
int foo() { } // error, no void foo() implementation
}interface D
{
int foo();
}
class A : D
{
int foo() { return 1; }
}
class B : A
{
int foo() { return 2; }
}
...
B b = new B();
b.foo(); // returns 2
D d = cast(D) b; // ok since B inherits A's D implementation
d.foo(); // returns 2;Interfaces can be reimplemented in derived classes:
interface D
{
int foo();
}
class A : D
{
int foo() { return 1; }
}
class B : A, D
{
int foo() { return 2; }
}
...
B b = new B();
b.foo(); // returns 2
D d = cast(D) b;
d.foo(); // returns 2
A a = cast(A) b;
D d2 = cast(D) a;
d2.foo(); // returns 2, even though it is A's D, not B's DA reimplemented interface must implement all the interface functions, it does not inherit them from a super class:
interface D
{
int foo();
}
class A : D
{
int foo() { return 1; }
}
class B : A, D
{
} // error, no foo() for interface DInterfaces with Contracts
Interface member functions can have contracts even though there is no body for the function. The contracts are inherited by any class member function that implements that interface member function.
interface I
{
int foo(int i)
in { assert(i > 7); }
out (result) { assert(result & 1); }
void bar();
}Const and Immutable Interfaces
If an interface has const or immutable storage class, then all members of the interface are const or immutable. This storage class is not inherited.
COM Interfaces
A variant on interfaces is the COM interface. A COM interface is designed to map directly onto a Windows COM object. Any COM object can be represented by a COM interface, and any D object with a COM interface can be used by external COM clients.
A COM interface is defined as one that derives from the interface std.c.windows.com.IUnknown. A COM interface differs from a regular D interface in that:
- It derives from the interface std.c.windows.com.IUnknown.
- It cannot be the argument of a DeleteExpression.
- References cannot be upcast to the enclosing class object, nor can they be downcast to a derived interface. To accomplish this, an appropriate QueryInterface() would have to be implemented for that interface in standard COM fashion.
- Classes derived from COM interfaces are COM classes.
- The default linkage for member functions of COM classes is extern(System).
- The first member of the vtbl[] is not the pointer to the InterfaceInfo, but the first virtual function pointer.
C++ Interfaces
C++ interfaces are interfaces declared with C++ linkage:
extern (C++) interface Ifoo
{
void foo();
void bar();
}which is meant to correspond with the following C++ declaration:
class Ifoo
{
virtual void foo();
virtual void bar();
};Any interface that derives from a C++ interface is also a C++ interface. A C++ interface differs from a D interface in that:
- It cannot be the argument of a DeleteExpression.
- References cannot be upcast to the enclosing class object, nor can they be downcast to a derived interface.
- The C++ calling convention is the default convention for its member functions, rather than the D calling convention.
- The first member of the vtbl[] is not the pointer to the Interface, but the first virtual function pointer.
Enums
EnumDeclaration:
enum EnumTag EnumBody
enum EnumBody
enum EnumTag : EnumBaseType EnumBody
enum : EnumBaseType EnumBody
EnumTag:
Identifier
EnumBaseType:
Type
EnumBody:
;
{ EnumMembers }
EnumMembers:
EnumMember
EnumMember ,
EnumMember , EnumMembers
EnumMember:
Identifier
Identifier = AssignExpression
Type = AssignExpressionEnum declarations are used to define a group of constants. They come in two forms:
- Named enums, which have an EnumTag.
- Anonymous enums, which do not have an EnumTag.
Named Enums
Named enums are used to declare related constants and group them by giving them a unique type. The EnumMembers are declared in the scope of the enum EnumTag. The enum EnumTag declares a new type, and all the EnumMembers have that type.
This defines a new type X which has values X.A=0, X.B=1, X.C=2:
enum X { A, B, C } // named enumIf the EnumBaseType is not explicitly set, and the first EnumMember has an initializer, it is set to the type of that initializer. Otherwise, it defaults to type int.
Named enum members may not have individual Types.
A named enum member can be implicitly cast to its EnumBaseType, but EnumBaseType types cannot be implicitly cast to an enum type.
The value of an EnumMember is given by its initializer. If there is no initializer, it is given the value of the previous EnumMember + 1. If it is the first EnumMember, it's value is 0.
Enums must have at least one member.
Enum Default Initializer
The .init property of an enum type is the value of the first member of that enum. This is also the default initializer for the enum type.
enum X { A=3, B, C }
X x; // x is initialized to 3Enum Properties
Enum properties only exist for named enums.
.init First enum member value .min Smallest value of enum .max Largest value of enum .sizeof Size of storage for an enumerated valueFor example:
enum X { A=3, B, C }
X.min // is X.A
X.max // is X.C
X.sizeof // is same as int.sizeofThe EnumBaseType of named enums must support comparison in order to compute the .max and .min properties.
Anonymous Enums
If the enum Identifier is not present, then the enum is an anonymous enum, and the EnumMembers are declared in the scope the EnumDeclaration appears in. No new type is created; the EnumMembers have the type of the EnumBaseType.
The EnumBaseType is the underlying type of the enum.If omitted, the EnumMembers can have different types. Those types are given by the first of:
- The Type, if present.
- The type of the AssignExpression, if present.
- The type of the previous EnumMember, if present.
- int
enum { A, B, C } // anonymous enumDefines the constants A=0, B=1, C=2, all of type int.
Enums must have at least one member.
The value of an EnumMember is given by its initializer. If there is no initializer, it is given the value of the previous EnumMember + 1. If it is the first EnumMember, it's value is 0.
enum { A, B = 5+7, C, D = 8+C, E }Sets A=0, B=12, C=13, D=21, and E=22, all of type int.
enum : long { A = 3, B }Sets A=3, B=4 all of type long.
enum : string {
A = "hello",
B = "betty",
C // error, cannot add 1 to "betty"
}enum {
A = 1.2f, // A is 1.2f of type float
B, // B is 2.2f of type float
int C = 3, // C is 3 of type int
D // D is 4 of type int
}Manifest Constants
If there is only one member of an anonymous enum, the { } can be omitted:
enum i = 4; // i is 4 of type int
enum long l = 3; // l is 3 of type longSuch declarations are not lvalues, meaning their address cannot be taken.
Const and Immutable
When examining a data structure or interface, it is very helpful to be able to easily tell which data can be expected to not change, which data might change, and who may change that data. This is done with the aid of the language typing system. Data can be marked as const or immutable, with the default being changeable (or mutable).
immutable applies to data that cannot change. Immutable data values, once constructed, remain the same for the duration of the program's execution. Immutable data can be placed in ROM (Read Only Memory) or in memory pages marked by the hardware as read only. Since immutable data does not change, it enables many opportunities for program optimization, and has applications in functional style programming.
const applies to data that cannot be changed by the const reference to that data. It may, however, be changed by another reference to that same data. Const finds applications in passing data through interfaces that promise not to modify them.
Both immutable and const are transitive, which means that any data reachable through an immutable reference is also immutable, and likewise for const.
Immutable Storage Class
The simplest immutable declarations use it as a storage class. It can be used to declare manifest constants.
immutable int x = 3; // x is set to 3
x = 4; // error, x is immutable
char[x] s; // s is an array of 3 char'sThe type can be inferred from the initializer:
immutable y = 4; // y is of type int
y = 5; // error, y is immutableIf the initializer is not present, the immutable can be initialized from the corresponding constructor:
immutable int z;
void test() {
z = 3; // error, z is immutable
}
static this() {
z = 3; // ok, can set immutable that doesn't
// have static initializer
}The initializer for a non-local immutable declaration must be evaluatable at compile time:
int foo(int f) { return f * 3; }
int i = 5;
immutable x = 3 * 4; // ok, 12
immutable y = i + 1; // error, cannot evaluate at compile time
immutable z = foo(2) + 1; // ok, foo(2) can be evaluated at compile time, 7The initializer for a non-static local immutable declaration is evaluated at run time:
int foo(int f)
{
immutable x = f + 1; // evaluated at run time
x = 3; // error, x is immutable
}Because immutable is transitive, data referred to by an immutable is also immutable:
immutable char[] s = "foo";
s[0] = 'a'; // error, s refers to immutable data
s = "bar"; // error, s is immutableImmutable declarations can appear as lvalues, i.e. they can have their address taken, and occupy storage.
Const Storage Class
A const declaration is exactly like an immutable declaration, with the following differences:
- Any data referenced by the const declaration cannot be changed from the const declaration, but it might be changed by other references to the same data.
- The type of a const declaration is itself const.
Immutable Type
Data that will never change its value can be typed as immutable. The immutable keyword can be used as a type constructor:
immutable(char)[] s = "hello";The immutable applies to the type within the following parentheses. So, while s can be assigned new values, the contents of s[] cannot be:
s[0] = 'b'; // error, s[] is immutable
s = null; // ok, s itself is not immutableImmutableness is transitive, meaning it applies to anything that can be referenced from the immutable type:
immutable(char*)** p = ...;
p = ...; // ok, p is not immutable
*p = ...; // ok, *p is not immutable
**p = ...; // error, **p is immutable
***p = ...; // error, ***p is immutableImmutable used as a storage class is equivalent to using immutable as a type constructor for the entire type of a declaration:
immutable int x = 3; // x is typed as immutable(int)
immutable(int) y = 3; // y is immutableCreating Immutable Data
The first way is to use a literal that is already immutable, such as string literals. String literals are always immutable.
auto s = "hello"; // s is immutable(char)[5]
char[] p = "world"; // error, cannot implicitly convert immutable
// to mutableThe second way is to cast data to immutable. When doing so, it is up to the programmer to ensure that no other mutable references to the same data exist.
char[] s = ...;
immutable(char)[] p = cast(immutable)s; // undefined behavior
immutable(char)[] p = cast(immutable)s.dup; // ok, unique referenceThe .idup property is a convenient way to create an immutable copy of an array:
auto p = s.idup;
p[0] = ...; // error, p[] is immutableRemoving Immutable With A Cast
The immutable type can be removed with a cast:
immutable int* p = ...;
int* q = cast(int*)p;This does not mean, however, that one can change the data:
*q = 3; // allowed by compiler, but result is undefined behaviorThe ability to cast away immutable-correctness is necessary in some cases where the static typing is incorrect and not fixable, such as when referencing code in a library one cannot change. Casting is, as always, a blunt and effective instrument, and when using it to cast away immutable-correctness, one must assume the responsibility to ensure the immutableness of the data, as the compiler will no longer be able to statically do so.
Immutable Member Functions
Immutable member functions are guaranteed that the object and anything referred to by the this reference is immutable. They are declared as:
struct S {
int x;
void foo() immutable {
x = 4; // error, x is immutable
this.x = 4; // error, x is immutable
}
}Note that using immutable on the left hand side of a method does not apply to the return type:
struct S {
immutable int[] bar() // bar is still immutable, return type is not!
{
}
}To make the return type immutable, you need to surround the return type with parentheses:
struct S {
immutable(int[]) bar() // bar is now mutable, return type is immutable.
{
}
}To make both the return type and the method immutable, you can write:
struct S {
immutable(int[]) bar() immutable
{
}
}Const Type
Const types are like immutable types, except that const forms a read-only view of data. Other aliases to that same data may change it at any time.
Const Member Functions
Const member functions are functions that are not allowed to change any part of the object through the member function's this reference.
Implicit Conversions
Mutable and immutable types can be implicitly converted to const. Mutable types cannot be implicitly converted to immutable, and vice versa.
Comparing D Immutable and Const with C++ Const
Const, Immutable Comparison Feature D C++98 const keyword Yes Yes immutable keyword Yes No const notation Functional://ptr to const ptr to const int
const(int*)* p; Postfix://ptr to const ptr to const int
const int *const *p; transitive const Yes://const ptr to const ptr to const int
const int** p;
**p = 3; // error No:// const ptr to ptr to int
int** const p;
**p = 3; // ok cast away const Yes:// ptr to const int
const(int)* p;
int* q = cast(int*)p; // ok Yes:// ptr to const int
const int* p;
int* q = const_cast<int*>p; //ok modification after casting away const No:// ptr to const int
const(int)* p;
int* q = cast(int*)p;
*q = 3; // undefined behavior Yes:// ptr to const int
const int* p;
int* q = const_cast<int*>p;
*q = 3; // ok overloading of top level const Yes:void foo(int x);
void foo(const int x); //ok No:void foo(int x);
void foo(const int x); //error aliasing of const with mutable Yes:void foo(const int* x, int* y)
{
bar(*x); // bar(3)
*y = 4;
bar(*x); // bar(4)
}
...
int i = 3;
foo(&i, &i); Yes:void foo(const int* x, int* y)
{
bar(*x); // bar(3)
*y = 4;
bar(*x); // bar(4)
}
...
int i = 3;
foo(&i, &i); aliasing of immutable with mutable No:void foo(immutable int* x, int* y) {
bar(*x); // bar(3)
*y = 4; // undefined behavior
bar(*x); // bar(??)
}
...
int i = 3;
foo(cast(immutable)&i, &i); No immutables type of string literal immutable(char)[] const char* implicit conversion of string literal to non-const not allowed allowed, but deprecated
Functions
FunctionBody:
BlockStatement
BodyStatement
InStatement BodyStatement
OutStatement BodyStatement
InStatement OutStatement BodyStatement
OutStatement InStatement BodyStatement
InStatement:
in BlockStatement
OutStatement:
out BlockStatement
out ( Identifier ) BlockStatement
BodyStatement:
body BlockStatementFunction Return Values
Function return values are considered to be rvalues. This means they cannot be passed by reference to other functions.
Pure Functions
Pure functions are functions that produce the same result for the same arguments. To that end, a pure function:
- does not read or write any global mutable state
- cannot call functions that are not pure
- can override an impure function, but an impure function cannot override a pure one
- is covariant with an impure function
- cannot perform I/O
As a concession to practicality, a pure function can:
- allocate memory via a NewExpression
- terminate the program
- read and write the floating point exception flags
- read and write the floating point mode flags, as long as those flags are restored to their initial state upon function entry
- perform impure operations in statements that are in a ConditionalStatement controlled by a DebugCondition.
A pure function can throw exceptions.
import std.stdio;
int x;
immutable int y;
const int* pz;
pure int foo(int i,
char* p,
const char* q,
immutable int* s)
{
debug writeln("in foo()"); // ok, impure code allowed in debug statement
x = i; // error, modifying global state
i = x; // error, reading mutable global state
i = y; // ok, reading immutable global state
i = *pz; // error, reading const global state
return i;
}Nothrow Functions
Nothrow functions do not throw any exceptions derived from class Exception.
Nothrow functions are covariant with throwing ones.
Ref Functions
Ref functions allow functions to return by reference. This is analogous to ref function parameters.
ref int foo() {
auto p = new int;
return *p;
}
...
foo() = 3; // reference returns can be lvaluesAuto Functions
Auto functions have their return type inferred from any ReturnStatements in the function body.
An auto function is declared without a return type. If it does not already have a storage class, use the auto storage class.
If there are multiple ReturnStatements, the types of them must match exactly. If there are no ReturnStatements, the return type is inferred to be void.
auto foo(int i) {
return i + 3; // return type is inferred to be int
}Auto Ref Functions
Auto ref functions infer their return type just as auto functions do. In addition, they become ref functions if the return expression is an lvalue, and it would not be a reference to a local or a parameter.
auto ref foo(int x) { return x; } // value return
auto ref foo() { return 3; } // value return
auto ref foo(ref int x) { return x; } // ref return
auto ref foo(out int x) { return x; } // ref return
auto ref foo() { static int x; return x; } // ref returnThe lexically first ReturnStatement determines the ref-ness of a function:
auto ref foo(ref int x) { return 3; return x; } // ok, value return
auto ref foo(ref int x) { return x; return 3; } // error, ref return, 3 is not an lvalueInout Functions
Functions that deal with mutable, const, or immutable types with equanimity often need to transmit their type to the return value:
int[] foo(int[] a, int x, int y) { return a[x .. y]; }
const(int)[] foo(const(int)[] a, int x, int y) { return a[x .. y]; }
immutable(int)[] foo(immutable(int)[] a, int x, int y) { return a[x .. y]; }The code generated by these three functions is identical. To indicate that these can be one function, the inout type constructor is employed:
inout(int)[] foo(inout(int)[] a, int x, int y) { return a[x .. y]; }The inout forms a wildcard that stands in for any of mutable, const or immutable. When the function is called, the inout of the return type is changed to whatever the mutable, const, or immutable status of the argument type to the parameter inout was.
Inout types can be implicitly converted to const, but to nothing else. Other types cannot be implicitly converted to inout. Casting to or from inout is not allowed in @safe functions.
If an inout appears in a function parameter list, it must also appear in the return type.
A set of arguments to a function with inout parameters is considered a match if any inout argument types match exactly, or:
- No argument types are composed of inout types.
- A mutable, const or immutable argument type can be matched against each corresponding parameter inout type.
If such a match occurs, if every match is mutable, then the inout is considered matched with mutable. If every match is immutable, then the inout is considered matched with immutable. Otherwise, the inout is considered matched with const. The inout in the return type is then rewritten to be the inout matched attribute.
Global and static variable types cannot have any inout components.
Note: Shared types are not overlooked. Shared types cannot be matched with inout.
Property Functions
Property functions are tagged with the @property attribute. They can be called without parentheses (hence acting like properties).
struct S {
int m_x;
@property {
int x() { return m_x; }
int x(int newx) { return m_x = newx; }
}
}
void foo() {
S s;
s.x = 3; // calls s.x(int)
bar(s.x); // calls bar(s.x())
}Virtual Functions
Virtual functions are functions that are called indirectly through a function pointer table, called a vtbl[], rather than directly. All non-static non-private non-template member functions are virtual. This may sound inefficient, but since the D compiler knows all of the class hierarchy when generating code, all functions that are not overridden can be optimized to be non-virtual. In fact, since C++ programmers tend to "when in doubt, make it virtual", the D way of "make it virtual unless we can prove it can be made non-virtual" results, on average, in many more direct function calls. It also results in fewer bugs caused by not declaring a function virtual that gets overridden.
Functions with non-D linkage cannot be virtual, and hence cannot be overridden.
Member template functions cannot be virtual, and hence cannot be overridden.
Functions marked as final may not be overridden in a derived class, unless they are also private. For example:
class A {
int def() { ... }
final int foo() { ... }
final private int bar() { ... }
private int abc() { ... }
}
class B : A {
int def() { ... } // ok, overrides A.def
int foo() { ... } // error, A.foo is final
int bar() { ... } // ok, A.bar is final private, but not virtual
int abc() { ... } // ok, A.abc is not virtual, B.abc is virtual
}
void test(A a) {
a.def(); // calls B.def
a.foo(); // calls A.foo
a.bar(); // calls A.bar
a.abc(); // calls A.abc
}
void func() {
B b = new B();
test(b);
}Covariant return types are supported, which means that the overriding function in a derived class can return a type that is derived from the type returned by the overridden function:
class A { }
class B : A { }
class Foo {
A test() { return null; }
}
class Bar : Foo {
B test() { return null; } // overrides and is covariant with Foo.test()
}Virtual functions all have a hidden parameter called the this reference, which refers to the class object for which the function is called.
Function Inheritance and Overriding
A functions in a derived class with the same name and parameter types as a function in a base class overrides that function:class A {
int foo(int x) { ... }
}
class B : A {
override int foo(int x) { ... }
}
void test() {
B b = new B();
bar(b);
}
void bar(A a) {
a.foo(1); // calls B.foo(int)
}However, when doing overload resolution, the functions in the base class are not considered:
class A {
int foo(int x) { ... }
int foo(long y) { ... }
}
class B : A {
override int foo(long x) { ... }
}
void test() {
B b = new B();
b.foo(1); // calls B.foo(long), since A.foo(int) not considered
A a = b;
a.foo(1); // issues runtime error (instead of calling A.foo(int))
}To consider the base class's functions in the overload resolution process, use an AliasDeclaration:
class A {
int foo(int x) { ... }
int foo(long y) { ... }
}
class B : A {
alias A.foo foo;
override int foo(long x) { ... }
}
void test() {
B b = new B();
bar(b);
}
void bar(A a) {
a.foo(1); // calls A.foo(int)
B b = new B();
b.foo(1); // calls A.foo(int)
}If such an AliasDeclaration is not used, the derived class's functions completely override all the functions of the same name in the base class, even if the types of the parameters in the base class functions are different. If, through implicit conversions to the base class, those other functions do get called, a core.exception.HiddenFuncError exception is raised:
import core.exception;
class A {
void set(long i) { }
void set(int i) { }
}
class B : A {
void set(long i) { }
}
void foo(A a) {
int i;
try {
a.set(3); // error, throws runtime exception since
// A.set(int) should not be available from B
}
catch (HiddenFuncError o) {
i = 1;
}
assert(i == 1);
}
void main() {
foo(new B);
}If an HiddenFuncError exception is thrown in your program, the use of overloads and overrides needs to be reexamined in the relevant classes.
The HiddenFuncError exception is not thrown if the hidden function is disjoint, as far as overloading is concerned, from all the other virtual functions is the inheritance hierarchy.
A function parameter's default value is not inherited:
class A {
void foo(int x = 5) { ... }
}
class B : A {
void foo(int x = 7) { ... }
}
class C : B {
void foo(int x) { ... }
}
void test() {
A a = new A();
a.foo(); // calls A.foo(5)
B b = new B();
b.foo(); // calls B.foo(7)
C c = new C();
c.foo(); // error, need an argument for C.foo
}Inline Functions
There is no inline keyword. The compiler makes the decision whether to inline a function or not, analogously to the register keyword no longer being relevant to a compiler's decisions on enregistering variables. (There is no register keyword either.)Function Overloading
Functions are overloaded based on how well the arguments to a function can match up with the parameters. The function with the best match is selected. The levels of matching are:
- no match
- match with implicit conversions
- match with conversion to const
- exact match
Each argument (including any this pointer) is compared against the function's corresponding parameter, to determine the match level for that argument. The match level for a function is the worst match level of each of its arguments.
Literals do not match ref or out parameters.
If two or more functions have the same match level, then partial ordering is used to try to find the best match. Partial ordering finds the most specialized function. If neither function is more specialized than the other, then it is an ambiguity error. Partial ordering is determined for functions f() and g() by taking the parameter types of f(), constructing a list of arguments by taking the default values of those types, and attempting to match them against g(). If it succeeds, then g() is at least as specialized as f(). For example:
class A { }
class B : A { }
class C : B { }
void foo(A);
void foo(B);
void test() {
C c;
/* Both foo(A) and foo(B) match with implicit conversion rules.
* Applying partial ordering rules,
* foo(B) cannot be called with an A, and foo(A) can be called
* with a B. Therefore, foo(B) is more specialized, and is selected.
*/
foo(c); // calls foo(B)
}A function with a variadic argument is considered less specialized than a function without.
Functions defined with non-D linkage cannot be overloaded. because the name mangling does not take the parameter types into account.
Overload Sets
Functions declared at the same scope overload against each other, and are called an Overload Set. A typical example of an overload set are functions defined at module level:
module A;
void foo() { }
void foo(long i) { }A.foo() and A.foo(long) form an overload set. A different module can also define functions with the same name:
module B;
class C { }
void foo(C) { }
void foo(int i) { }and A and B can be imported by a third module, C. Both overload sets, the A.foo overload set and the B.foo overload set, are found. An instance of foo is selected based on it matching in exactly one overload set:
import A;
import B;
void bar(C c) {
foo(); // calls A.foo()
foo(1L); // calls A.foo(long)
foo(c); // calls B.foo(C)
foo(1,2); // error, does not match any foo
foo(1); // error, matches A.foo(long) and B.foo(int)
A.foo(1); // calls A.foo(long)
}Even though B.foo(int) is a better match than A.foo(long) for foo(1), it is an error because the two matches are in different overload sets.
Overload sets can be merged with an alias declaration:
import A;
import B;
alias A.foo foo;
alias B.foo foo;
void bar(C c) {
foo(); // calls A.foo()
foo(1L); // calls A.foo(long)
foo(c); // calls B.foo(C)
foo(1,2); // error, does not match any foo
foo(1); // calls B.foo(int)
A.foo(1); // calls A.foo(long)
}Function Parameters
Parameter storage classes are in, out, ref, lazy, final, const, immutable, or scope. For example:int foo(in int x, out int y, ref int z, int q);x is in, y is out, z is ref, and q is none.
The in storage class is equivalent to const scope.
The scope storage class means that references in the parameter cannot be escaped (e.g. assigned to a global variable).
If no storage class is specified, the parameter becomes a mutable copy of its argument.
- The function declaration makes it clear what the inputs and outputs to the function are.
- It eliminates the need for IDL as a separate language.
- It provides more information to the compiler, enabling more error checking and possibly better code generation.
out parameters are set to the default initializer for the type of it. For example:
void foo(out int x) {
// x is set to 0 at start of foo()
}
int a = 3;
foo(a);
// a is now 0
void abc(out int x) {
x = 2;
}
int y = 3;
abc(y);
// y is now 2
void def(ref int x) {
x += 1;
}
int z = 3;
def(z);
// z is now 4For dynamic array and object parameters, which are passed by reference, in/out/ref apply only to the reference and not the contents.
Lazy arguments are evaluated not when the function is called, but when the parameter is evaluated within the function. Hence, a lazy argument can be executed 0 or more times. A lazy parameter cannot be an lvalue.
void dotimes(int n, lazy void exp) {
while (n--)
exp();
}
void test() {
int x;
dotimes(3, writefln(x++));
}prints to the console:
0
1
2A lazy parameter of type void can accept an argument of any type.
Function Default Arguments
Function parameter declarations can have default values:
void foo(int x, int y = 3) {
...
}
...
foo(4); // same as foo(4, 3);Default parameters are evaluated in the context of the function declaration. If the default value for a parameter is given, all following parameters must also have default values.
Variadic Functions
Functions taking a variable number of arguments are called variadic functions. A variadic function can take one of three forms:
- C-style variadic functions
- Variadic functions with type info
- Typesafe variadic functions
C-style Variadic Functions
A C-style variadic function is declared as taking a parameter of ... after the required function parameters. It has non-D linkage, such as extern (C):extern (C) int foo(int x, int y, ...);There must be at least one non-variadic parameter declared.
foo(3, 4); // ok
foo(3, 4, 6.8); // ok, one variadic argument
foo(2); // error, y is a required argumentextern (C) int def(...); // error, must have at least one parameterC-style variadic functions match the C calling convention for variadic functions, and is most useful for calling C library functions like printf. The implementiations of these variadic functions have a special local variable declared for them, _argptr, which is a void* pointer to the first of the variadic arguments. To access the arguments, _argptr must be cast to a pointer to the expected argument type:foo(3, 4, 5); // first variadic argument is 5To protect against the vagaries of stack layouts on different CPU architectures, use std.c.stdarg to access the variadic arguments:
int foo(int x, int y, ...) {
int z;
z = *cast(int*)_argptr; // z is set to 5
}import std.c.stdarg;D-style Variadic Functions
Variadic functions with argument and type info are declared as taking a parameter of ... after the required function parameters. It has D linkage, and need not have any non-variadic parameters declared:int abc(char c, ...); // one required parameter: cThese variadic functions have a special local variable declared for them, _argptr, which is a void* pointer to the first of the variadic arguments. To access the arguments, _argptr must be cast to a pointer to the expected argument type:
int def(...); // okfoo(3, 4, 5); // first variadic argument is 5An additional hidden argument with the name _arguments and type TypeInfo[] is passed to the function. _arguments gives the number of arguments and the type of each, enabling the creation of typesafe variadic functions.
int foo(int x, int y, ...) {
int z;
z = *cast(int*)_argptr; // z is set to 5
}import std.stdio;which prints:
class Foo { int x = 3; }
class Bar { long y = 4; }
void printargs(int x, ...) {
writefln("%d arguments", _arguments.length);
for (int i = 0; i < _arguments.length; i++)
{
_arguments[i].print();
if (_arguments[i] == typeid(int))
{
int j = *cast(int *)_argptr;
_argptr += int.sizeof;
writefln("\t%d", j);
}
else if (_arguments[i] == typeid(long))
{
long j = *cast(long *)_argptr;
_argptr += long.sizeof;
writefln("\t%d", j);
}
else if (_arguments[i] == typeid(double))
{
double d = *cast(double *)_argptr;
_argptr += double.sizeof;
writefln("\t%g", d);
}
else if (_arguments[i] == typeid(Foo))
{
Foo f = *cast(Foo*)_argptr;
_argptr += Foo.sizeof;
writefln("\t%X", f);
}
else if (_arguments[i] == typeid(Bar))
{
Bar b = *cast(Bar*)_argptr;
_argptr += Bar.sizeof;
writefln("\t%X", b);
}
else
assert(0);
}
}
void main() {
Foo f = new Foo();
Bar b = new Bar();
writefln("%X", f);
printargs(1, 2, 3L, 4.5, f, b);
}00870FE0To protect against the vagaries of stack layouts on different CPU architectures, use std.stdarg to access the variadic arguments:
5 arguments
int
2
long
3
double
4.5
Foo
00870FE0
Bar
00870FD0import std.stdio;
import std.stdarg;
void foo(int x, ...) {
writefln("%d arguments", _arguments.length);
for (int i = 0; i < _arguments.length; i++)
{
_arguments[i].print();
if (_arguments[i] == typeid(int))
{
int j = va_arg!(int)(_argptr);
writefln("\t%d", j);
}
else if (_arguments[i] == typeid(long))
{
long j = va_arg!(long)(_argptr);
writefln("\t%d", j);
}
else if (_arguments[i] == typeid(double))
{
double d = va_arg!(double)(_argptr);
writefln("\t%g", d);
}
else if (_arguments[i] == typeid(FOO))
{
FOO f = va_arg!(FOO)(_argptr);
writefln("\t%X", f);
}
else
assert(0);
}
}Typesafe Variadic Functions
Typesafe variadic functions are used when the variable argument portion of the arguments are used to construct an array or class object.For arrays:
int test() {For static arrays:
return sum(1, 2, 3) + sum(); // returns 6+0
}
int func() {
int[3] ii = [4, 5, 6];
return sum(ii); // returns 15
}
int sum(int[] ar ...) {
int s;
foreach (int x; ar)
s += x;
return s;
}int test() {For class objects:
return sum(2, 3); // error, need 3 values for array
return sum(1, 2, 3); // returns 6
}
int func() {
int[3] ii = [4, 5, 6];
int[] jj = ii;
return sum(ii); // returns 15
return sum(jj); // error, type mismatch
}
int sum(int[3] ar ...) {
int s;
foreach (int x; ar)
s += x;
return s;
}class Foo {An implementation may construct the object or array instance on the stack. Therefore, it is an error to refer to that instance after the variadic function has returned:
int x;
string s;
this(int x, string s) {
this.x = x;
this.s = s;
}
}
void test(int x, Foo f ...);
...
Foo g = new Foo(3, "abc");
test(1, g); // ok, since g is an instance of Foo
test(1, 4, "def"); // ok
test(1, 5); // error, no matching constructor for FooFoo test(Foo f ...) {For other types, the argument is built with itself, as in:
return f; // error, f instance contents invalid after return
}
int[] test(int[] a ...) {
return a; // error, array contents invalid after return
return a[0..1]; // error, array contents invalid after return
return a.dup; // ok, since copy is made
}int test(int i ...) {
return i;
}
...
test(3); // returns 3
test(3, 4); // error, too many arguments
int[] x;
test(x); // error, type mismatchLazy Variadic Functions
If the variadic parameter is an array of delegates with no parameters:
void foo(int delegate()[] dgs ...);Then each of the arguments whose type does not match that of the delegate is converted to a delegate.
int delegate() dg;
foo(1, 3+x, dg, cast(int delegate())null);is the same as:
foo( { return 1; }, { return 3+x; }, dg, null );Local Variables
It is an error to use a local variable without first assigning it a value. The implementation may not always be able to detect these cases. Other language compilers sometimes issue a warning for this, but since it is always a bug, it should be an error.
It is an error to declare a local variable that is never referred to. Dead variables, like anachronistic dead code, are just a source of confusion for maintenance programmers.
It is an error to declare a local variable that hides another local variable in the same function:
void func(int x) {
int x; // error, hides previous definition of x
double y;
...
{ char y; // error, hides previous definition of y
int z;
}
{ wchar z; // legal, previous z is out of scope
}
}While this might look unreasonable, in practice whenever this is done it either is a bug or at least looks like a bug.
It is an error to return the address of or a reference to a local variable.
It is an error to have a local variable and a label with the same name.
Nested Functions
Functions may be nested within other functions:
int bar(int a) {
int foo(int b) {
int abc() { return 1; }
return b + abc();
}
return foo(a);
}
void test() {
int i = bar(3); // i is assigned 4
}Nested functions can be accessed only if the name is in scope.
void foo()
{
void A()
{
B(); // error, B() is forward referenced
C(); // error, C undefined
}
void B()
{
A(); // ok, in scope
void C()
{
void D()
{
A(); // ok
B(); // ok
C(); // ok
D(); // ok
}
}
}
A(); // ok
B(); // ok
C(); // error, C undefined
}and:
int bar(int a) {
int foo(int b) { return b + 1; }
int abc(int b) { return foo(b); } // ok
return foo(a);
}
void test() {
int i = bar(3); // ok
int j = bar.foo(3); // error, bar.foo not visible
}Nested functions have access to the variables and other symbols defined by the lexically enclosing function. This access includes both the ability to read and write them.
int bar(int a) {
int c = 3;
int foo(int b) {
b += c; // 4 is added to b
c++; // bar.c is now 5
return b + c; // 12 is returned
}
c = 4;
int i = foo(a); // i is set to 12
return i + c; // returns 17
}
void test() {
int i = bar(3); // i is assigned 17
}This access can span multiple nesting levels:
int bar(int a) {
int c = 3;
int foo(int b) {
int abc() {
return c; // access bar.c
}
return b + c + abc();
}
return foo(3);
}Static nested functions cannot access any stack variables of any lexically enclosing function, but can access static variables. This is analogous to how static member functions behave.
int bar(int a) {
int c;
static int d;
static int foo(int b) {
b = d; // ok
b = c; // error, foo() cannot access frame of bar()
return b + 1;
}
return foo(a);
}Functions can be nested within member functions:
struct Foo {
int a;
int bar() {
int c;
int foo() {
return c + a;
}
return 0;
}
}Member functions of nested classes and structs do not have access to the stack variables of the enclosing function, but do have access to the other symbols:
void test() {
int j;
static int s;
struct Foo {
int a;
int bar() {
int c = s; // ok, s is static
int d = j; // error, no access to frame of test()
int foo() {
int e = s; // ok, s is static
int f = j; // error, no access to frame of test()
return c + a; // ok, frame of bar() is accessible,
// so are members of Foo accessible via
// the 'this' pointer to Foo.bar()
}
return 0;
}
}
}Nested functions always have the D function linkage type.
Unlike module level declarations, declarations within function scope are processed in order. This means that two nested functions cannot mutually call each other:
void test() {
void foo() { bar(); } // error, bar not defined
void bar() { foo(); } // ok
}The solution is to use a delegate:
void test() {
void delegate() fp;
void foo() { fp(); }
void bar() { foo(); }
fp = &bar;
}Future directions: This restriction may be removed.
Delegates, Function Pointers, and Closures
A function pointer can point to a static nested function:
int function() fp;
void test() {
static int a = 7;
static int foo() { return a + 3; }
fp = &foo;
}
void bar() {
test();
int i = fp(); // i is set to 10
}A delegate can be set to a non-static nested function:
int delegate() dg;
void test() {
int a = 7;
int foo() { return a + 3; }
dg = &foo;
int i = dg(); // i is set to 10
}The stack variables referenced by a nested function are still valid even after the function exits (this is different from D 1.0). This is called a closure. Returning addresses of stack variables, however, is not a closure and is an error.
int* bar() {
int b;
test();
int i = dg(); // ok, test.a is in a closure and still exists
return &b; // error, bar.b not valid after bar() exits
}Delegates to non-static nested functions contain two pieces of data: the pointer to the stack frame of the lexically enclosing function (called the frame pointer) and the address of the function. This is analogous to struct/class non-static member function delegates consisting of a this pointer and the address of the member function. Both forms of delegates are interchangeable, and are actually the same type:
struct Foo {
int a = 7;
int bar() { return a; }
}
int foo(int delegate() dg) {
return dg() + 1;
}
void test() {
int x = 27;
int abc() { return x; }
Foo f;
int i;
i = foo(&abc); // i is set to 28
i = foo(&f.bar); // i is set to 8
}This combining of the environment and the function is called a dynamic closure.
The .ptr property of a delegate will return the frame pointer value as a void*.
The .funcptr property of a delegate will return the function pointer value as a function type.
Future directions: Function pointers and delegates may merge into a common syntax and be interchangeable with each other.
Anonymous Functions and Anonymous Delegates
See FunctionLiterals.
main() Function
For console programs, main() serves as the entry point. It gets called after all the module initializers are run, and after any unittests are run. After it returns, all the module destructors are run. main() must be declared using one of the following forms:
void main() { ... }
void main(char[][] args) { ... }
int main() { ... }
int main(char[][] args) { ... }Compile Time Function Execution (CTFE)
A subset of functions can be executed at compile time. This is useful when constant folding algorithms need to include recursion and looping. In order to be executed at compile time, a function must meet the following criteria:
- function arguments must all be:
- integer literals
- floating point literals
- character literals
- string literals
- array literals where the members are all items in this list
- associative array literals where the members are all items in this list
- struct literals where the members are all items in this list
- const variables initialized with a member of this list
- delegates
- pointers to functions
- delegate literals
- function literals
- function parameters may not be C-style variadic
- the function may not be synchronized
- expressions in the function may not:
- throw exceptions
- use pointers or classes
- reference any global state or variables
- reference any local static variables
- delete
- call any function that is not executable at compile time
- the following statement types are not allowed:
- synchronized statements
- throw statements
- with statements
- scope statements
- try-catch-finally statements
- labeled break and continue statements
- as a special case, the following properties can be executed at compile time:
.dup .length .keys .valuesIn order to be executed at compile time, the function must appear in a context where it must be so executed, for example:
- initialization of a static variable
- dimension of a static array
- argument for a template value parameter
template eval( A... ) {
const typeof(A[0]) eval = A[0];
}
int square(int i) {
return i * i;
}
void foo() {
static j = square(3); // compile time
writefln(j);
writefln(square(4)); // run time
writefln(eval!(square(5))); // compile time
}Executing functions at compile time can take considerably longer than executing it at run time. If the function goes into an infinite loop, it will hang at compile time (rather than hanging at run time).
Functions executed at compile time can give different results from run time in the following scenarios:
- floating point computations may be done at a higher precision than run time
- dependency on implementation defined order of evaluation
- use of uninitialized variables
These are the same kinds of scenarios where different optimization settings affect the results.
String Mixins and Compile Time Function Execution
Any functions that execute at compile time must also be executable at run time. The compile time evaluation of a function does the equivalent of running the function at run time. This means that the semantics of a function cannot depend on compile time values of the function. For example:
int foo(char[] s) {
return mixin(s);
}
const int x = foo("1");is illegal, because the runtime code for foo() cannot be generated. A function template would be the appropriate method to implement this sort of thing.
Function Safety
Safe functions are functions that are statically checked to exhibit no possibility of undefined behavior. Undefined behavior is often used as a vector for malicious attacks.
Safe Functions
Safe functions are marked with the @safe attribute.
The following operations are not allowed in safe functions:
- No casting from a pointer type to any type other than void*.
- No casting from any non-pointer type to a pointer type.
- No modification of pointer values.
- Cannot access unions that have pointers or references overlapping with other types.
- Calling any system functions.
- No catching of exceptions that are not derived from class Exception.
- No inline assembler.
- No explicit casting of mutable objects to immutable.
- No explicit casting of immutable objects to mutable.
- No explicit casting of thread local objects to shared.
- No explicit casting of shared objects to thread local.
- No taking the address of a local variable or function parameter.
- Cannot access __gshared variables.
Functions nested inside safe functions default to being safe functions.
Safe functions are covariant with trusted or system functions.
Note: The verifiable safety of functions may be compromised by bugs in the compiler and specification. Please report all such errors so they can be corrected.
Trusted Functions
Trusted functions are marked with the @trusted attribute.
Trusted functions are guaranteed by the programmer to not exhibit any undefined behavior if called by a safe function. Generally, trusted functions should be kept small so that they are easier to manually verify.
Trusted functions may call safe, trusted, or system functions.
Trusted functions are covariant with safe or system functions.
System Functions
System functions are functions not marked with @safe or @trusted and are not nested inside @safe functions. System functions may be marked with the @system attribute. A function being system does not mean it actually is unsafe, it just means that the compiler is unable to verify that it cannot exhibit undefined behavior.
System functions are not covariant with trusted or safe functions.
Function Attribute Inference
FunctionLiterals and function templates, since their function bodies are always present, infer the pure, nothrow, and @safe attributes unless specifically overridden.
Attribute inference is not done for other functions, even if the function body is present.
The inference is done by determining if the function body follows the rules of the particular attribute.
Cyclic functions (i.e. functions that wind up directly or indirectly calling themselves) are inferred as being impure, throwing, and @system.
If a function attempts to test itself for those attributes, then the function is inferred as not having those attributes.
Operator Overloading
Operator overloading is accomplished by rewriting operators whose operands are class or struct objects into calls to specially named member functions. No additional syntax is used.
- Unary Operator Overloading
- Cast Operator Overloading
- Binary Operator Overloading
- Overloading == and !=
- Overloading < <=, > and >=
- Function Call Operator Overloading
- Assignment Operator Overloading
- Op Assignment Operator Overloading
- Index Operator Overloading
- Slice Operator Overloading
- Forwarding
Unary Operator Overloading
Overloadable Unary Operators op rewrite -e e.opUnary!("-")() +e e.opUnary!("+")() ~e e.opUnary!("~")() *e e.opUnary!("*")() ++e e.opUnary!("++")() --e e.opUnary!("--")()For example, in order to overload the - (negation) operator for struct S, and no other operator:
struct S {
int m;
int opUnary(string s)() if (s == "-") {
return -m;
}
}
int foo(S s) {
return -s;
}Postincrement e++ and Postdecrement e-- Operators
These are not directly overloadable, but instead are rewritten in terms of the ++e and --e prefix operators:
Postfix Operator Rewrites op rewrite e-- (auto t = e, --e, t) e++ (auto t = e, ++e, t)Overloading Index Unary Operators
Overloadable Index Unary Operators op rewrite -a[b1, b2, ... bn] a.opIndexUnary!("-")(b1, b2, ... bn) +a[b1, b2, ... bn] a.opIndexUnary!("+")(b1, b2, ... bn) ~a[b1, b2, ... bn] a.opIndexUnary!("~")(b1, b2, ... bn) *a[b1, b2, ... bn] a.opIndexUnary!("*")(b1, b2, ... bn) ++a[b1, b2, ... bn] a.opIndexUnary!("++")(b1, b2, ... bn) --a[b1, b2, ... bn] a.opIndexUnary!("--")(b1, b2, ... bn)Overloading Slice Unary Operators
Overloadable Slice Unary Operators op rewrite -a[i..j] a.opSliceUnary!("-")(i, j) +a[i..j] a.opSliceUnary!("+")(i, j) ~a[i..j] a.opSliceUnary!("~")(i, j) *a[i..j] a.opSliceUnary!("*")(i, j) ++a[i..j] a.opSliceUnary!("++")(i, j) --a[i..j] a.opSliceUnary!("--")(i, j) -a[ ] a.opSliceUnary!("-")() +a[ ] a.opSliceUnary!("+")() ~a[ ] a.opSliceUnary!("~")() *a[ ] a.opSliceUnary!("*")() ++a[ ] a.opSliceUnary!("++")() --a[ ] a.opSliceUnary!("--")()Cast Operator Overloading
Cast Operators op rewrite cast(type)e e.opCast!(type)()Boolean Operations
Notably absent from the list of overloaded unary operators is the ! logical negation operator. More obscurely absent is a unary operator to convert to a bool result. Instead, these are covered by a rewrite to:
opCast!(bool)(e)So,
if (e) => if (e.opCast!(bool))
if (!e) => if (!e.opCast!(bool))etc., whenever a bool result is expected. This only happens, however, for instances of structs. Class references are converted to bool by checking to see if the class reference is null or not.
Binary Operator Overloading
The following binary operators are overloadable:
Overloadable Binary Operators + - * / % ^^ & | ^ << >> >>> ~ inThe expression:
a op bis rewritten as both:
a.opBinary!("op")(b)
b.opBinaryRight!("op")(a)and the one with the ‘better’ match is selected. It is an error for both to equally match.
Overloading == and !=
Expressions of the form a != b are rewritten as !(a == b).
Given a == b :
- If a and b are both class objects, then the expression is rewritten as:
.object.opEquals(a, b)and that function is implemented as:
bool opEquals(Object a, Object b) {
if (a is b) return true;
if (a is null || b is null) return false;
if (typeid(a) == typeid(b)) return a.opEquals(b);
return a.opEquals(b) && b.opEquals(a);
}- Otherwise the expressions a.opEquals(b) and b.opEquals(a) are tried. If both resolve to the same opEquals function, then the expression is rewritten to be a.opEquals(b).
- If one is a better match then the other, or one compiles and the other does not, the one is selected.
- Otherwise, an error results.
If overridding Object.opEquals() for classes, the class member function signature should look like:
class C {
override bool opEquals(Object o) { ... }
}If structs declare an opEquals member function, it should follow the following form:
struct S {
int opEquals(ref const S s) { ... }
}Overloading < <=, > and >=
Comparison operations are rewritten as follows:
Overloadable Unary Operators comparison rewrite 1 rewrite 2 a < b a.opCmp(b) < 0 b.opCmp(a) > 0 a <= b a.opCmp(b) <= 0 b.opCmp(a) >= 0 a > b a.opCmp(b) > 0 b.opCmp(a) < 0 a >= b a.opCmp(b) >= 0 b.opCmp(a) <= 0Both rewrites are tried. If only one compiles, that one is taken. If they both resolve to the same function, the first rewrite is done. If they resolve to different functions, the best matching one is used. If they both match the same, but are different functions, an ambiguity error results.
If overriding Object.opCmp() for classes, the class member function signature should look like:
class C {
override int opCmp(Object o) { ... }
}If structs declare an opCmp member function, it should follow the following form:
struct S {
int opCmp(ref const S s) { ... }
}Function Call Operator Overloading f()
The function call operator, (), can be overloaded by declaring a function named opCall:
struct F {
int opCall();
int opCall(int x, int y, int z);
}
void test() {
F f;
int i;
i = f(); // same as i = f.opCall();
i = f(3,4,5); // same as i = f.opCall(3,4,5);
}In this way a struct or class object can behave as if it were a function.
Assignment Operator Overloading
The assignment operator = can be overloaded if the lvalue is a struct aggregate, and opAssign is a member function of that aggregate.
The assignment operator cannot be overloaded for rvalues that can be implicitly cast to the lvalue type. Furthermore, the following parameter signatures for opAssign are not allowed:
opAssign(...)
opAssign(T)
opAssign(T, ...)
opAssign(T ...)
opAssign(T, U = defaultValue, etc.)where T is the same type as the aggregate type A, is implicitly convertible to A, or if A is a struct and T is a pointer to a type that is implicitly convertible to A.
Index Assignment Operator Overloading
If the left hand side of an assignment is an index operation on a struct or class instance, it can be overloaded by providing an opIndexAssign member function. Expressions of the form a[b1, b2, ... bn] = c are rewritten as a.opIndexAssign(c, b1, b2, ... bn).
struct A {
int opIndexAssign(int value, size_t i1, size_t i2);
}
void test() {
A a;
a[i,3] = 7; // same as a.opIndexAssign(7,i,3);
}Slice Assignment Operator Overloading
If the left hand side of an assignment is a slice operation on a struct or class instance, it can be overloaded by providing an opSliceAssign member function. Expressions of the form a[i..j] = c are rewritten as a.opSliceAssign(c, i, j), and a[] = c as a.opSliceAssign(c).
struct A {
int opSliceAssign(int v); // overloads a[] = v
int opSliceAssign(int v, size_t x, size_t y); // overloads a[i .. j] = v
}
void test() {
A a;
int v;
a[] = v; // same as a.opSliceAssign(v);
a[3..4] = v; // same as a.opSliceAssign(v,3,4);
}Op Assignment Operator Overloading
The following op assignment operators are overloadable:
Overloadable Op Assignment Operators += -= *= /= %= ^^= &= |= ^= <<= >>= >>>= ~=The expression:
a op= bis rewritten as:
a.opOpAssign!("op")(b)Index Op Assignment Operator Overloading
If the left hand side of an op= is an index expression on a struct or class instance and opIndexOpAssign is a member:
a[b1, b2, ... bn] op= cit is rewritten as:
a.opIndexOpAssign!("op")(c, b1, b2, ... bn)Slice Op Assignment Operator Overloading
If the left hand side of an op= is a slice expression on a struct or class instance and opSliceOpAssign is a member:
a[i..j] op= cit is rewritten as:
a.opSliceOpAssign!("op")(c, i, j)and
a[] op= cit is rewritten as:
a.opSliceOpAssign!("op")(c)Index Operator Overloading
The array index operator, a[b1, b2, ... bn], can be overloaded by declaring a function named opIndex with one or more parameters.
struct A {
int opIndex(size_t i1, size_t i2, size_t i3);
}
void test() {
A a;
int i;
i = a[5,6,7]; // same as i = a.opIndex(5,6,7);
}In this way a struct or class object can behave as if it were an array.
If an index expression can be rewritten using opIndexAssign or opIndexOpAssign, those are preferred over opIndex.
Slice Operator Overloading
Overloading the slicing operator means overloading expressions like a[] and a[i..j]. This can be done by declaring a member function named opSlice.
class A {
int opSlice(); // overloads a[]
int opSlice(size_t x, size_t y); // overloads a[i .. j]
}
void test() {
A a = new A();
int i;
int v;
i = a[]; // same as i = a.opSlice();
i = a[3..4]; // same as i = a.opSlice(3,4);
}If a slice expression can be rewritten using opSliceAssign or opSliceOpAssign, those are preferred over opSlice.
Forwarding
Member names not found in a class or struct can be forwarded to a template function named opDispatch for resolution.
import std.stdio;
struct S {
void opDispatch(string s, T)(T i)
{
writefln("S.opDispatch('%s', %s)", s, i);
}
}
class C {
void opDispatch(string s)(int i) {
writefln("C.opDispatch('%s', %s)", s, i);
}
}
struct D {
template opDispatch(string s) {
enum int opDispatch = 8;
}
}
void main() {
S s;
s.opDispatch!("hello")(7);
s.foo(7);
auto c = new C();
c.foo(8);
D d;
writefln("d.foo = %s", d.foo);
assert(d.foo == 8);
}
Templates
I think that I can safely say that nobody understands template mechanics. -- Richard Deyman
Templates are D's approach to generic programming. Templates are defined with a TemplateDeclaration:
TemplateDeclaration:
template TemplateIdentifier ( TemplateParameterList ) Constraintopt
{ DeclDefs }
TemplateIdentifier:
Identifier
TemplateParameterList:
TemplateParameter
TemplateParameter ,
TemplateParameter , TemplateParameterList
TemplateParameter:
TemplateTypeParameter
TemplateValueParameter
TemplateAliasParameter
TemplateTupleParameter
TemplateThisParameterThe body of the TemplateDeclaration must be syntactically correct even if never instantiated. Semantic analysis is not done until instantiated. A template forms its own scope, and the template body can contain classes, structs, types, enums, variables, functions, and other templates.
Template parameters can be types, values, symbols, or tuples. Types can be any type. Value parameters must be of an integral type, floating point type, or string type and specializations for them must resolve to an integral constant, floating point constant, null, or a string literal. Symbols can be any non-local symbol. Tuples are a sequence of 0 or more types, values or symbols.
Template parameter specializations constrain the values or types the TemplateParameter can accept.
Template parameter defaults are the value or type to use for the TemplateParameter in case one is not supplied.
Explicit Template Instantiation
Templates are explicitly instantiated with:
TemplateInstance:
TemplateIdentifier !( TemplateArgumentList )
TemplateIdentifier ! TemplateSingleArgument
TemplateArgumentList:
TemplateArgument
TemplateArgument ,
TemplateArgument , TemplateArgumentList
TemplateArgument:
Type
AssignExpression
Symbol
Symbol:
SymbolTail
. SymbolTail
SymbolTail:
Identifier
Identifier . SymbolTail
TemplateInstance
TemplateInstance . SymbolTail
TemplateSingleArgument:
Identifier
BasicTypeX
CharacterLiteral
StringLiteral
IntegerLiteral
FloatLiteral
true
false
null
__FILE__
__LINE__Once instantiated, the declarations inside the template, called the template members, are in the scope of the TemplateInstance:
template TFoo(T) { alias T* t; }
...
TFoo!(int).t x; // declare x to be of type int*If the TemplateArgument is one token long, the parentheses can be omitted:
TFoo!int.t x; // same as TFoo!(int).t x;A template instantiation can be aliased:
template TFoo(T) { alias T* t; }
alias TFoo!(int) abc;
abc.t x; // declare x to be of type int*Multiple instantiations of a TemplateDeclaration with the same TemplateArgumentList, before implicit conversions, all will refer to the same instantiation. For example:
template TFoo(T) { T f; }
alias TFoo!(int) a;
alias TFoo!(int) b;
...
a.f = 3;
assert(b.f == 3); // a and b refer to the same instance of TFooThis is true even if the TemplateInstances are done in different modules.
Even if template arguments are implicitly converted to the same template parameter type, they still refer to different instances:
struct TFoo(int x) { }
static assert(is(TFoo!(3) == TFoo!(2 + 1))); // 3 and 2+1 are both 3 of type int
static assert(!is(TFoo!(3) == TFoo!(3u))); // 3u and 3 are different typesIf multiple templates with the same TemplateIdentifier are declared, they are distinct if they have a different number of arguments or are differently specialized.
For example, a simple generic copy template would be:
template TCopy(T) {
void copy(out T to, T from) {
to = from;
}
}To use the template, it must first be instantiated with a specific type:
int i;
TCopy!(int).copy(i, 3);Instantiation Scope
TemplateInstantances are always performed in the scope of where the TemplateDeclaration is declared, with the addition of the template parameters being declared as aliases for their deduced types.
For example:
module atemplate TFoo(T) { void bar() { func(); } }module bimport a;
void func() { }
alias TFoo!(int) f; // error: func not defined in module aand:
module atemplate TFoo(T) { void bar() { func(1); } }module b
void func(double d) { }import a;
void func(int i) { }
alias TFoo!(int) f;
...
f.bar(); // will call a.func(double)TemplateParameter specializations and default values are evaluated in the scope of the TemplateDeclaration.
Argument Deduction
The types of template parameters are deduced for a particular template instantiation by comparing the template argument with the corresponding template parameter.
For each template parameter, the following rules are applied in order until a type is deduced for each parameter:
- If there is no type specialization for the parameter, the type of the parameter is set to the template argument.
- If the type specialization is dependent on a type parameter, the type of that parameter is set to be the corresponding part of the type argument.
- If after all the type arguments are examined there are any type parameters left with no type assigned, they are assigned types corresponding to the template argument in the same position in the TemplateArgumentList.
- If applying the above rules does not result in exactly one type for each template parameter, then it is an error.
For example:
template TFoo(T) { }
alias TFoo!(int) Foo1; // (1) T is deduced to be int
alias TFoo!(char*) Foo2; // (1) T is deduced to be char*
template TBar(T : T*) { }
alias TBar!(char*) Foo3; // (2) T is deduced to be char
template TAbc(D, U : D[]) { }
alias TAbc!(int, int[]) Bar1; // (2) D is deduced to be int, U is int[]
alias TAbc!(char, int[]) Bar2; // (4) error, D is both char and int
template TDef(D : E*, E) { }
alias TDef!(int*, int) Bar3; // (1) E is int
// (3) D is int*Deduction from a specialization can provide values for more than one parameter:
template Foo(T: T[U], U) {
...
}
Foo!(int[long]) // instantiates Foo with T set to int, U set to longWhen considering matches, a class is considered to be a match for any super classes or interfaces:
class A { }
class B : A { }
template TFoo(T : A) { }
alias TFoo!(B) Foo4; // (3) T is B
template TBar(T : U*, U : A) { }
alias TBar!(B*, B) Foo5; // (2) T is B*
// (3) U is BTemplate Type Parameters
TemplateTypeParameter:
Identifier
Identifier TemplateTypeParameterSpecialization
Identifier TemplateTypeParameterDefault
Identifier TemplateTypeParameterSpecialization TemplateTypeParameterDefault
TemplateTypeParameterSpecialization:
: Type
TemplateTypeParameterDefault:
= TypeSpecialization
Templates may be specialized for particular types of arguments by following the template parameter identifier with a : and the specialized type. For example:
template TFoo(T) { ... } // #1
template TFoo(T : T[]) { ... } // #2
template TFoo(T : char) { ... } // #3
template TFoo(T,U,V) { ... } // #4
alias TFoo!(int) foo1; // instantiates #1
alias TFoo!(double[]) foo2; // instantiates #2 with T being double
alias TFoo!(char) foo3; // instantiates #3
alias TFoo!(char, int) fooe; // error, number of arguments mismatch
alias TFoo!(char, int, int) foo4; // instantiates #4The template picked to instantiate is the one that is most specialized that fits the types of the TemplateArgumentList. Determine which is more specialized is done the same way as the C++ partial ordering rules. If the result is ambiguous, it is an error.
Template This Parameters
TemplateThisParameters are used in member function templates to pick up the type of the this reference.
import std.stdio;
struct S {
const void foo(this T)(int i) {
writeln(typeid(T));
}
}
void main() {
const(S) s;
(&s).foo(1);
S s2;
s2.foo(2);
immutable(S) s3;
s3.foo(3);
}Prints:
const(S)
S
immutable(S)Template Value Parameters
TemplateValueParameter:
BasicType Declarator
BasicType Declarator TemplateValueParameterSpecialization
BasicType Declarator TemplateValueParameterDefault
BasicType Declarator TemplateValueParameterSpecialization TemplateValueParameterDefault
TemplateValueParameterSpecialization:
: ConditionalExpression
TemplateValueParameterDefault:
= __FILE__
= __LINE__
= AssignExpressionThe __FILE__ and __LINE__ expand to the source file name and line number at the point of instantiation.
Template value parameter types can be any type which can be statically initialized at compile time, and the value argument can be any expression which can be evaluated at compile time. This includes integers, floating point types, and strings.
template foo(string s) {
string bar() { return s ~ " betty"; }
}
void main() {
writefln("%s", foo!("hello").bar()); // prints: hello betty
}This example of template foo has a value parameter that is specialized for 10:
template foo(U : int, int T : 10) {
U x = T;
}
void main() {
assert(foo!(int, 10).x == 10);
}Template Alias Parameters
TemplateAliasParameter:
alias Identifier TemplateAliasParameterSpecializationopt TemplateAliasParameterDefaultopt
alias BasicType Declarator TemplateAliasParameterSpecializationopt TemplateAliasParameterDefaultopt
TemplateAliasParameterSpecialization:
: Type
: ConditionalExpression
TemplateAliasParameterDefault:
= Type
= ConditionalExpressionAlias parameters enable templates to be parameterized with any type of D symbol, including global names, local names, typedef names, module names, template names, and template instance names. Literals can also be used as arguments to alias parameters.
- Global names
int x;
template Foo(alias X) {
static int* p = &X;
}
void test() {
alias Foo!(x) bar;
*bar.p = 3; // set x to 3
static int y;
alias Foo!(y) abc;
*abc.p = 3; // set y to 3
}- Type names
class Foo {
static int p;
}
template Bar(alias T) {
alias T.p q;
}
void test() {
alias Bar!(Foo) bar;
bar.q = 3; // sets Foo.p to 3
}- Module names
import std.string;
template Foo(alias X) {
alias X.toString y;
}
void test() {
alias Foo!(std.string) bar;
bar.y(3); // calls std.string.toString(3)
}- Template names
int x;
template Foo(alias X) {
static int* p = &X;
}
template Bar(alias T) {
alias T!(x) abc;
}
void test() {
alias Bar!(Foo) bar;
*bar.abc.p = 3; // sets x to 3
}- Template alias names
int x;
template Foo(alias X) {
static int* p = &X;
}
template Bar(alias T) {
alias T.p q;
}
void test() {
alias Foo!(x) foo;
alias Bar!(foo) bar;
*bar.q = 3; // sets x to 3
}- Literals
template Foo(alias X, alias Y) {
static int i = X;
static string s = Y;
}
void test() {
alias Foo!(3, "bar") foo;
writeln(foo.i, foo.s); // prints 3bar
}Template Tuple Parameters
If the last template parameter in the TemplateParameterList is declared as a TemplateTupleParameter, it is a match with any trailing template arguments. The sequence of arguments form a Tuple. A Tuple is not a type, an expression, or a symbol. It is a sequence of any mix of types, expressions or symbols.
A Tuple whose elements consist entirely of types is called a TypeTuple. A Tuple whose elements consist entirely of expressions is called an ExpressionTuple.
A Tuple can be used as an argument list to instantiate another template, or as the list of parameters for a function.
template Print(A ...) {
void print() {
writefln("args are ", A);
}
}
template Write(A ...) {
void write(A a) // A is a TypeTuple
// a is an ExpressionTuple
{
writefln("args are ", a);
}
}
void main() {
Print!(1,'a',6.8).print(); // prints: args are 1a6.8
Write!(int, char, double).write(1, 'a', 6.8); // prints: args are 1a6.8
}Template tuples can be deduced from the types of the trailing parameters of an implicitly instantiated function template:
template Foo(T, R...) {
void Foo(T t, R r) {
writefln(t);
static if (r.length) // if more arguments
Foo(r); // do the rest of the arguments
}
}
void main() {
Foo(1, 'a', 6.8);
}prints:
1
a
6.8The tuple can also be deduced from the type of a delegate or function parameter list passed as a function argument:
import std.stdio;
/* R is return type
* A is first argument type
* U is TypeTuple of rest of argument types
*/
R delegate(U) Curry(R, A, U...)(R delegate(A, U) dg, A arg)
{
struct Foo
{
typeof(dg) dg_m;
typeof(arg) arg_m;
R bar(U u)
{
return dg_m(arg_m, u);
}
}
Foo* f = new Foo;
f.dg_m = dg;
f.arg_m = arg;
return &f.bar;
}
void main()
{
int plus(int x, int y, int z)
{
return x + y + z;
}
auto plus_two = Curry(&plus, 2);
writefln("%d", plus_two(6, 8)); // prints 16
}The number of elements in a Tuple can be retrieved with the .length property. The nth element can be retrieved by indexing the Tuple with [n], and sub tuples can be created with the slicing syntax.
Tuples are static compile time entities, there is no way to dynamically change, add, or remove elements.
If both a template with a tuple parameter and a template without a tuple parameter exactly match a template instantiation, the template without a TemplateTupleParameter is selected.
Template Parameter Default Values
Trailing template parameters can be given default values:
template Foo(T, U = int) { ... }
Foo!(uint,long); // instantiate Foo with T as uint, and U as long
Foo!(uint); // instantiate Foo with T as uint, and U as int
template Foo(T, U = T*) { ... }
Foo!(uint); // instantiate Foo with T as uint, and U as uint*Implicit Template Properties
If a template has exactly one member in it, and the name of that member is the same as the template name, that member is assumed to be referred to in a template instantiation:
template Foo(T) {
T Foo; // declare variable Foo of type T
}
void test() {
Foo!(int) = 6; // instead of Foo!(int).Foo
}Template Constructors
Templates can be used to form constructors for classes and structs.
Class Templates
ClassTemplateDeclaration:
class Identifier ( TemplateParameterList ) Constraintopt BaseClassList ClassBodyIf a template declares exactly one member, and that member is a class with the same name as the template:
template Bar(T) {
class Bar {
T member;
}
}then the semantic equivalent, called a ClassTemplateDeclaration can be written as:
class Bar(T) {
T member;
}Struct, Union, and Interface Templates
StructTemplateDeclaration:
struct Identifier ( TemplateParameterList ) Constraintopt StructBody
UnionTemplateDeclaration:
union Identifier ( TemplateParameterList ) Constraintopt StructBody
InterfaceTemplateDeclaration:
interface Identifier ( TemplateParameterList ) Constraintopt BaseInterfaceList InterfaceBodyAnalogously to class templates, struct, union and interfaces can be transformed into templates by supplying a template parameter list.
Function Templates
If a template declares exactly one member, and that member is a function with the same name as the template, it is a function template declaration. Alternatively, a function template declaration is a function declaration with a TemplateParameterList immediately preceding the Parameters.
A function template to compute the square of type T is:
T Square(T)(T t) {
return t * t;
}Function templates can be explicitly instantiated with a !(TemplateArgumentList):
writefln("The square of %s is %s", 3, Square!(int)(3));or implicitly, where the TemplateArgumentList is deduced from the types of the function arguments:
writefln("The square of %s is %s", 3, Square(3)); // T is deduced to be intIf there are fewer arguments supplied in the TemplateArgumentList than parameters in the TemplateParameterList, the arguments fulfill parameters from left to right, and the rest of the parameters are then deduced from the function arguments.
Function template type parameters that are to be implicitly deduced may not have specializations:
void Foo(T : T*)(T t) { ... }
int x,y;
Foo!(int*)(x); // ok, T is not deduced from function argument
Foo(&y); // error, T has specializationTemplate arguments not implicitly deduced can have default values:
void Foo(T, U=T*)(T t) { U p; ... }
int x;
Foo(&x); // T is int, U is int*Function templates can have their return types deduced based on the first ReturnStatement in the function:
auto Square(T)(T t) {
return t * t;
}If there is more than one return statement, then the types of the return statement expressions must match. If there are no return statements, then the return type of the function template is void.
Function Templates with Auto Ref Parameters
An auto ref function template parameter becomes a ref parameter if its corresponding argument is an lvalue, otherwise it becomes a value parameter:
int foo(T...)(auto ref T x) {
int result;
foreach (i, v; x)
{
if (v == 10)
assert(__traits(isRef, x[i]));
else
assert(!__traits(isRef, x[i]));
result += v;
}
return result;
}
void main() {
int y = 10;
int r;
r = foo(8); // returns 8
r = foo(y); // returns 10
r = foo(3, 4, y); // returns 17
r = foo(4, 5, y); // returns 19
r = foo(y, 6, y); // returns 26
}Auto ref parameters can be combined with auto ref return attributes:
auto ref min(T, U)(auto ref T lhs, auto ref U rhs)
{
return lhs > rhs ? rhs : lhs;
}
void main()
{
int x = 7, y = 8;
int i;
i = min(4, 3); // returns 3
i = min(x, y); // returns 7
min(x, y) = 10; // sets x to 10
static assert(!__traits(compiles, min(3, y) = 10));
static assert(!__traits(compiles, min(y, 3) = 10));
}Recursive Templates
Template features can be combined to produce some interesting effects, such as compile time evaluation of non-trivial functions. For example, a factorial template can be written:
template factorial(int n : 1) {
enum { factorial = 1 }
}
template factorial(int n) {
enum { factorial = n* factorial!(n-1) }
}
void test() {
writefln("%s", factorial!(4)); // prints 24
}Template Constraints
Constraints are used to impose additional constraints on matching arguments to a template beyond what is possible in the TemplateParameterList. The ConstraintExpression is computed at compile time and returns a result that is converted to a boolean value. If that value is true, then the template is matched, otherwise the template is not matched.
For example, the following function template only matches with odd values of N:
void foo(int N)()
if (N & 1)
{
...
}
...
foo!(3)(); // ok, matches
foo!(4)(); // error, no matchLimitations
Templates cannot be used to add non-static members or virtual functions to classes. For example:
class Foo {
template TBar(T) {
T xx; // becomes a static member of Foo
int func(T) { ... } // non-virtual
static T yy; // Ok
static int func(T t, int y) { ... } // Ok
}
}Templates cannot be declared inside functions.
Templates cannot add functions to interfaces:
interface TestInterface { void tpl(T)(); } // error
Template Mixins
A TemplateMixin takes an arbitrary set of declarations from the body of a TemplateDeclaration and inserts them into the current context.TemplateMixinDeclaration:
mixin template TemplateIdentifier ( TemplateParameterList ) Constraintopt
{ DeclDefs }
TemplateMixin:
mixin TemplateIdentifier ;
mixin TemplateIdentifier MixinIdentifier ;
mixin TemplateIdentifier !( TemplateArgumentList ) ;
mixin TemplateIdentifier !( TemplateArgumentList ) MixinIdentifier ;
MixinIdentifier:
IdentifierA TemplateMixin can occur in declaration lists of modules, classes, structs, unions, and as a statement. The TemplateIdentifier refers to a TemplateDeclaration. If the TemplateDeclaration has no parameters, the mixin form that has no !(TemplateArgumentList) can be used.
Unlike a template instantiation, a template mixin's body is evaluated within the scope where the mixin appears, not where the template declaration is defined. It is analogous to cutting and pasting the body of the template into the location of the mixin. It is useful for injecting parameterized ‘boilerplate’ code, as well as for creating templated nested functions, which is not possible with template instantiations.
mixin template Foo() {Mixins can be parameterized:
int x = 5;
}
mixin Foo;
struct Bar {
mixin Foo;
}
void test() {
writefln("x = %d", x); // prints 5
{
Bar b;
int x = 3;
writefln("b.x = %d", b.x); // prints 5
writefln("x = %d", x); // prints 3
{
mixin Foo;
writefln("x = %d", x); // prints 5
x = 4;
writefln("x = %d", x); // prints 4
}
writefln("x = %d", x); // prints 3
}
writefln("x = %d", x); // prints 5
}mixin template Foo(T) {Mixins can add virtual functions to a class:
T x = 5;
}
mixin Foo!(int); // create x of type intmixin template Foo() {Mixins are evaluated in the scope of where they appear, not the scope of the template declaration:
void func() { writefln("Foo.func()"); }
}
class Bar {
mixin Foo;
}
class Code : Bar {
void func() { writefln("Code.func()"); }
}
void test() {
Bar b = new Bar();
b.func(); // calls Foo.func()
b = new Code();
b.func(); // calls Code.func()
}int y = 3;Mixins can parameterize symbols using alias parameters:
mixin template Foo() {
int abc() { return y; }
}
void test() {
int y = 8;
mixin Foo; // local y is picked up, not global y
assert(abc() == 8);
}mixin template Foo(alias b) {This example uses a mixin to implement a generic Duff's device for an arbitrary statement (in this case, the arbitrary statement is in bold). A nested function is generated as well as a delegate literal, these can be inlined by the compiler:
int abc() { return b; }
}
void test() {
int y = 8;
mixin Foo!(y);
assert(abc() == 8);
}mixin template duffs_device(alias id1, alias id2, alias s)
{
void duff_loop()
{
if (id1 < id2)
{
typeof(id1) n = (id2 - id1 + 7) / 8;
switch ((id2 - id1) % 8)
{
case 0: do { s();
case 7: s();
case 6: s();
case 5: s();
case 4: s();
case 3: s();
case 2: s();
case 1: s();
} while (--n > 0);
}
}
}
}
void foo() { writefln("foo"); }
void test() {
int i = 1;
int j = 11;
mixin duffs_device!(i, j, delegate { foo(); } );
duff_loop(); // executes foo() 10 times
}Mixin Scope
The declarations in a mixin are ‘imported’ into the surrounding scope. If the name of a declaration in a mixin is the same as a declaration in the surrounding scope, the surrounding declaration overrides the mixin one:int x = 3;If two different mixins are put in the same scope, and each define a declaration with the same name, there is an ambiguity error when the declaration is referenced:
mixin template Foo() {
int x = 5;
int y = 5;
}
mixin Foo;
int y = 3;
void test() {
writefln("x = %d", x); // prints 3
writefln("y = %d", y); // prints 3
}mixin template Foo() {
int x = 5;
void func(int x) { }
}
mixin template Bar() {
int x = 4;
void func() { }
}
mixin Foo;
mixin Bar;
void test() {
writefln("x = %d", x); // error, x is ambiguous
func(); // error, func is ambiguous
}The call to func() is ambiguous because Foo.func and Bar.func are in different scopes.
If a mixin has a MixinIdentifier, it can be used to disambiguate:
int x = 6;
mixin template Foo() {
int x = 5;
int y = 7;
void func() { }
}
mixin template Bar() {
int x = 4;
void func() { }
}
mixin Foo F;
mixin Bar B;
void test() {
writefln("y = %d", y); // prints 7
writefln("x = %d", x); // prints 6
writefln("F.x = %d", F.x); // prints 5
writefln("B.x = %d", B.x); // prints 4
F.func(); // calls Foo.func
B.func(); // calls Bar.func
}Alias declarations can be used to overload together functions declared in different mixins:
mixin template Foo() {
void func(int x) { }
}
mixin template Bar() {
void func() { }
}
mixin Foo!() F;
mixin Bar!() B;
alias F.func func;
alias B.func func;
void main() {
func(); // calls B.func
func(1); // calls F.func
}A mixin has its own scope, even if a declaration is overridden by the enclosing one:
int x = 4;
mixin template Foo() {
int x = 5;
int bar() { return x; }
}
mixin Foo;
void test() {
writefln("x = %d", x); // prints 4
writefln("bar() = %d", bar()); // prints 5
}
Contract Programming
Contracts are a breakthrough technique to reduce the programming effort for large projects. Contracts are the concept of preconditions, postconditions, errors, and invariants. Contracts can be done in C++ without modification to the language, but the result is clumsy and inconsistent.Building contract support into the language makes for:
- a consistent look and feel for the contracts
- tool support
- it's possible the compiler can generate better code using information gathered from the contracts
- easier management and enforcement of contracts
- handling of contract inheritance
The idea of a contract is simple - it's just an expression that must evaluate to true. If it does not, the contract is broken, and by definition, the program has a bug in it. Contracts form part of the specification for a program, moving it from the documentation to the code itself. And as every programmer knows, documentation tends to be incomplete, out of date, wrong, or non-existent. Moving the contracts into the code makes them verifiable against the program.
Assert Contract
The most basic contract is the AssertExpression. An assert inserts a checkable expression into the code, and that expression must evaluate to true:assert(expression);C programmers will find it familiar. Unlike C, however, anassert
in function bodies works by throwing anAssertError
, which can be caught and handled. Catching the contract violation is useful when the code must deal with errant uses by other code, when it must be failure proof, and as a useful tool for debugging.Pre and Post Contracts
The pre contracts specify the preconditions before a statement is executed. The most typical use of this would be in validating the parameters to a function. The post contracts validate the result of the statement. The most typical use of this would be in validating the return value of a function and of any side effects it has. The syntax is:inBy definition, if a pre contract fails, then the body received bad parameters. An AssertError is thrown. If a post contract fails, then there is a bug in the body. An AssertError is thrown.
{
...contract preconditions...
}
out (result)
{
...contract postconditions...
}
body
{
...code...
}Either the
in
or theout
clause can be omitted. If theout
clause is for a function body, the variableresult
is declared and assigned the return value of the function. For example, let's implement a square root function:long square_root(long x)The assert's in the in and out bodies are called contracts. Any other D statement or expression is allowed in the bodies, but it is important to ensure that the code has no side effects, and that the release version of the code will not depend on any effects of the code. For a release build of the code, the in and out code is not inserted.
in
{
assert(x >= 0);
}
out (result)
{
assert((result * result) <= x && (result+1) * (result+1) >= x);
}
body
{
return cast(long)std.math.sqrt(cast(real)x);
}If the function returns a void, there is no result, and so there can be no result declaration in the out clause. In that case, use:
void func()In an out statement, result is initialized and set to the return value of the function.
out
{
...contracts...
}
body
{
...
}In, Out and Inheritance
If a function in a derived class overrides a function in its super class, then only one of the in contracts of the function and its base functions must be satisfied. Overriding functions then becomes a process of loosening the in contracts.
A function without an in contract means that any values of the function parameters are allowed. This implies that if any function in an inheritance hierarchy has no in contract, then in contracts on functions overriding it have no useful effect.
Conversely, all of the out contracts needs to be satisfied, so overriding functions becomes a processes of tightening the out contracts.
Class Invariants
Class invariants are used to specify characteristics of a class that always must be true (except while executing a member function). They are described in Classes.
References
Conditional Compilation
Conditional compilation is the process of selecting which code to compile and which code to not compile. (In C and C++, conditional compilation is done with the preprocessor directives #if / #else / #endif.)
ConditionalDeclaration:
Condition CCDeclarationBlock
Condition CCDeclarationBlock else CCDeclarationBlock
Condition : Declarations
CCDeclarationBlock:
Declaration
{ Declarations }
{ }
Declarations:
Declaration
Declaration Declarations
ConditionalStatement:
Condition NoScopeNonEmptyStatement
Condition NoScopeNonEmptyStatement else NoScopeNonEmptyStatementIf the Condition is satisfied, then the following CCDeclarationBlock or Statement is compiled in. If it is not satisfied, the CCDeclarationBlock or Statement after the optional else is compiled in.
Any CCDeclarationBlock or Statement that is not compiled in still must be syntactically correct.
No new scope is introduced, even if the CCDeclarationBlock or Statement is enclosed by { }.
ConditionalDeclarations and ConditionalStatements can be nested.
The StaticAssert can be used to issue errors at compilation time for branches of the conditional compilation that are errors.
Condition comes in the following forms:
Version Condition
Versions enable multiple versions of a module to be implemented with a single source file.
The VersionCondition is satisfied if the IntegerLiteral is greater than or equal to the current version level, or if Identifier matches a version identifier.
The version level and version identifier can be set on the command line by the -version switch or in the module itself with a VersionSpecification, or they can be predefined by the compiler.
Version identifiers are in their own unique name space, they do not conflict with debug identifiers or other symbols in the module. Version identifiers defined in one module have no influence over other imported modules.
int k;
version (Demo) // compile in this code block for the demo version
{ int i;
int k; // error, k already defined
i = 3;
}
x = i; // uses the i declared aboveversion (X86)
{
... // implement custom inline assembler version
}
else
{
... // use default, but slow, version
}The version(unittest) is satisfied if and only if the code is compiled with unit tests enabled (the -unittest option on dmd).
Version Specification
The version specification makes it straightforward to group a set of features under one major version, for example:
version (ProfessionalEdition)
{
version = FeatureA;
version = FeatureB;
version = FeatureC;
}
version (HomeEdition)
{
version = FeatureA;
}
...
version (FeatureB)
{
... implement Feature B ...
}Version identifiers or levels may not be forward referenced:
version (Foo)
{
int x;
}
version = Foo; // error, Foo already usedVersionSpecifications may only appear at module scope.
While the debug and version conditions superficially behave the same, they are intended for very different purposes. Debug statements are for adding debug code that is removed for the release version. Version statements are to aid in portability and multiple release versions.
Here's an example of a full version as opposed to a demo version:
class Foo {Various different version builds can be built with a parameter to version:
int a, b;
version(full)
{
int extrafunctionality()
{
...
return 1; // extra functionality is supported
}
}
else // demo
{
int extrafunctionality()
{
return 0; // extra functionality is not supported
}
}
}version(n) // add in version code if version level is >= n
{
... version code ...
}
version(identifier) // add in version code if version
// keyword is identifier
{
... version code ...
}These are presumably set by the command line as -version=n and -version=identifier.
Predefined Versions
Several environmental version identifiers and identifier name spaces are predefined for consistent usage. Version identifiers do not conflict with other identifiers in the code, they are in a separate name space. Predefined version identifiers are global, i.e. they apply to all modules being compiled and imported.
Predefined Version Identifiers Version Identifier Description DigitalMars Digital Mars is the compiler vendor X86 Intel and AMD 32 bit processors X86_64 AMD and Intel 64 bit processors Windows Microsoft Windows systems Win32 Microsoft 32 bit Windows systems Win64 Microsoft 64 bit Windows systems linux All linux systems D_NET .NET OSX Mac OS X FreeBSD FreeBSD Solaris Solaris Posix All posix systems (includes Linux, FreeBSD, OS X, Solaris, etc.) LittleEndian Byte order, least significant first BigEndian Byte order, most significant first D_Coverage Code coverage analysis instrumentation (command line switch -cov) is being generated D_Ddoc Ddoc documentation (command line switch -D) is being generated D_InlineAsm_X86 Inline assembler for X86 is implemented D_InlineAsm_X86_64 Inline assembler for X86-64 is implemented D_LP64 Pointers are 64 bits (command line switch -m64) D_PIC Position Independent Code (command line switch -fPIC) is being generated unittest Unit tests are enabled (command line switch -unittest) D_Version2 This is a D version 2 compiler none Never defined; used to just disable a section of code all Always defined; used as the opposite of noneOthers will be added as they make sense and new implementations appear.
It is inevitable that the D language will evolve over time. Therefore, the version identifier namespace beginning with "D_" is reserved for identifiers indicating D language specification or new feature conformance.
Furthermore, predefined version identifiers from this list cannot be set from the command line or from version statements. (This prevents things like both Windows and linux being simultaneously set.)
Compiler vendor specific versions can be predefined if the trademarked vendor identifier prefixes it, as in:
version(DigitalMars_funky_extension)
{
...
}It is important to use the right version identifier for the right purpose. For example, use the vendor identifier when using a vendor specific feature. Use the operating system identifier when using an operating system specific feature, etc.
Debug Condition
Two versions of programs are commonly built, a release build and a debug build. The debug build includes extra error checking code, test harnesses, pretty-printing code, etc. The debug statement conditionally compiles in its statement body. It is D's way of what in C is done with #ifdef DEBUG / #endif pairs.
The debug condition is satisfied when the -debug switch is thrown on the compiler.
The debug ( IntegerLiteral ) condition is satisfied when the debug level is >= IntegerLiteral.
The debug ( Identifier ) condition is satisfied when the debug identifier matches Identifier.
class Foo {
int a, b;
debug:
int flag;
}Debug Specification
Debug identifiers and levels are set either by the command line switch -debug or by a DebugSpecification.
Debug specifications only affect the module they appear in, they do not affect any imported modules. Debug identifiers are in their own namespace, independent from version identifiers and other symbols.
It is illegal to forward reference a debug specification:
debug (foo) writefln("Foo");
debug = foo; // error, foo used before setDebugSpecifications may only appear at module scope.
Various different debug builds can be built with a parameter to debug:
debug(IntegerLiteral) { } // add in debug code if debug level is >= IntegerLiteral
debug(identifier) { } // add in debug code if debug keyword is identifierThese are presumably set by the command line as -debug=n and -debug=identifier.
Static If Condition
AssignExpression is implicitly converted to a boolean type, and is evaluated at compile time. The condition is satisfied if it evaluates to true. It is not satisfied if it evaluates to false.
It is an error if AssignExpression cannot be implicitly converted to a boolean type or if it cannot be evaluated at compile time.
StaticIfConditions can appear in module, class, template, struct, union, or function scope. In function scope, the symbols referred to in the AssignExpression can be any that can normally be referenced by an expression at that point.
const int i = 3;
int j = 4;
static if (i == 3) // ok, at module scope
int x;
class C {
const int k = 5;
static if (i == 3) // ok
int x;
else
long x;
static if (j == 3) // error, j is not a constant
int y;
static if (k == 5) // ok, k is in current scope
int z;
}
template INT(int i) {
static if (i == 32)
alias int INT;
else static if (i == 16)
alias short INT;
else
static assert(0); // not supported
}
INT!(32) a; // a is an int
INT!(16) b; // b is a short
INT!(17) c; // error, static assert tripsA StaticIfConditional condition differs from an IfStatement in the following ways:
- It can be used to conditionally compile declarations, not just statements.
- It does not introduce a new scope even if { } are used for conditionally compiled statements.
- For unsatisfied conditions, the conditionally compiled code need only be syntactically correct. It does not have to be semantically correct.
- It must be evaluatable at compile time.
Static Assert
StaticAssert:
static assert ( AssignExpression );
static assert ( AssignExpression , AssignExpression );AssignExpression is evaluated at compile time, and converted to a boolean value. If the value is true, the static assert is ignored. If the value is false, an error diagnostic is issued and the compile fails.
Unlike AssertExpressions, StaticAsserts are always checked and evaluted by the compiler unless they appear in an unsatisfied conditional.
void foo() {
if (0)
{
assert(0); // never trips
static assert(0); // always trips
}
version (BAR)
{
}
else
{
static assert(0); // trips when version BAR is not defined
}
}StaticAssert is useful tool for drawing attention to conditional configurations not supported in the code.
The optional second AssignExpression can be used to supply additional information, such as a text string, that will be printed out along with the error diagnostic.
Traits
Traits are extensions to the language to enable programs, at compile time, to get at information internal to the compiler. This is also known as compile time reflection. It is done as a special, easily extended syntax (similar to Pragmas) so that new capabilities can be added as required.
TraitsExpression:
__traits ( TraitsKeyword , TraitsArguments )
TraitsKeyword:
isAbstractClass
isArithmetic
isAssociativeArray
isFinalClass
isFloating
isIntegral
isScalar
isStaticArray
isUnsigned
isVirtualFunction
isAbstractFunction
isFinalFunction
isStaticFunction
isRef
isOut
isLazy
hasMember
identifier
getMember
getOverloads
getVirtualFunctions
parent
classInstanceSize
allMembers
derivedMembers
isSame
compiles
TraitsArguments:
TraitsArgument
TraitsArgument , TraitsArguments
TraitsArgument:
AssignExpression
TypeisArithmetic
If the arguments are all either types that are arithmetic types, or expressions that are typed as arithmetic types, then true is returned. Otherwise, false is returned. If there are no arguments, false is returned.
import std.stdio;
void main() {
int i;
writefln(__traits(isArithmetic, int));
writefln(__traits(isArithmetic, i, i+1, int));
writefln(__traits(isArithmetic));
writefln(__traits(isArithmetic, int*));
}Prints:
true
true
false
falseisFloating
Works like isArithmetic, except it's for floating point types (including imaginary and complex types).
isIntegral
Works like isArithmetic, except it's for integral types (including character types).
isScalar
Works like isArithmetic, except it's for scalar types.
isUnsigned
Works like isArithmetic, except it's for unsigned types.
isStaticArray
Works like isArithmetic, except it's for static array types.
isAssociativeArray
Works like isArithmetic, except it's for associative array types.
isAbstractClass
If the arguments are all either types that are abstract classes, or expressions that are typed as abstract classes, then true is returned. Otherwise, false is returned. If there are no arguments, false is returned.
import std.stdio;
abstract class C { int foo(); }
void main() {
C c;
writefln(__traits(isAbstractClass, C));
writefln(__traits(isAbstractClass, c, C));
writefln(__traits(isAbstractClass));
writefln(__traits(isAbstractClass, int*));
}Prints:
true
true
false
falseisFinalClass
Works like isAbstractClass, except it's for final classes.
isVirtualFunction
Takes one argument. If that argument is a virtual function, true is returned, otherwise false.
import std.stdio;
struct S {
void bar() { }
}
class C {
void bar() { }
}
void main() {
writefln(__traits(isVirtualFunction, C.bar)); // true
writefln(__traits(isVirtualFunction, S.bar)); // false
}isAbstractFunction
Takes one argument. If that argument is an abstract function, true is returned, otherwise false.
import std.stdio;
struct S {
void bar() { }
}
class C {
void bar() { }
}
class AC {
abstract void foo();
}
void main() {
writefln(__traits(isAbstractFunction, C.bar)); // false
writefln(__traits(isAbstractFunction, S.bar)); // false
writefln(__traits(isAbstractFunction, AC.foo)); // true
}isFinalFunction
Takes one argument. If that argument is a final function, true is returned, otherwise false.
import std.stdio;
struct S {
void bar() { }
}
class C {
void bar() { }
final void foo();
}
final class FC {
void foo();
}
void main() {
writefln(__traits(isFinalFunction, C.bar)); // false
writefln(__traits(isFinalFunction, S.bar)); // false
writefln(__traits(isFinalFunction, C.foo)); // true
writefln(__traits(isFinalFunction, FC.foo)); // true
}isStaticFunction
Takes one argument. If that argument is a static function, meaning it has no context pointer, true is returned, otherwise false.
isRef, isOut, isLazy
Takes one argument. If that argument is a declaration, true is returned if it is ref, out, lazy, otherwise false.
void fooref(ref int x) {
static assert(__traits(isRef, x));
static assert(!__traits(isOut, x));
static assert(!__traits(isLazy, x));
}
void fooout(out int x) {
static assert(!__traits(isRef, x));
static assert(__traits(isOut, x));
static assert(!__traits(isLazy, x));
}
void foolazy(lazy int x) {
static assert(!__traits(isRef, x));
static assert(!__traits(isOut, x));
static assert(__traits(isLazy, x));
}hasMember
The first argument is a type that has members, or is an expression of a type that has members. The second argument is a string. If the string is a valid property of the type, true is returned, otherwise false.
import std.stdio;
struct S {
int m;
}
void main() {
S s;
writefln(__traits(hasMember, S, "m")); // true
writefln(__traits(hasMember, s, "m")); // true
writefln(__traits(hasMember, S, "y")); // false
writefln(__traits(hasMember, int, "sizeof")); // true
}identifier
Takes one argument, a symbol. Returns the identifier for that symbol as a string literal.
getMember
Takes two arguments, the second must be a string. The result is an expression formed from the first argument, followed by a ‘.’, followed by the second argument as an identifier.
import std.stdio;
struct S {
int mx;
static int my;
}
void main() {
S s;
__traits(getMember, s, "mx") = 1; // same as s.mx=1;
writefln(__traits(getMember, s, "m" ~ "x")); // 1
__traits(getMember, S, "mx") = 1; // error, no this for S.mx
__traits(getMember, S, "my") = 2; // ok
}getOverloads
The first argument is a class type or an expression of class type. The second argument is a string that matches the name of one of the functions of that class. The result is an array of all the overloads of that function.
import std.stdio;
class D {
this() { }
~this() { }
void foo() { }
int foo(int) { return 2; }
}
void main() {
D d = new D();
foreach (t; __traits(getOverloads, D, "foo"))
writefln(typeid(typeof(t)));
alias typeof(__traits(getOverloads, D, "foo")) b;
foreach (t; b)
writefln(typeid(t));
auto i = __traits(getOverloads, d, "foo")[1](1);
writefln(i);
}Prints:
void()
int()
void()
int()
2getVirtualFunctions
The first argument is a class type or an expression of class type. The second argument is a string that matches the name of one of the functions of that class. The result is an array of the virtual overloads of that function.
import std.stdio;
class D {
this() { }
~this() { }
void foo() { }
int foo(int) { return 2; }
}
void main() {
D d = new D();
foreach (t; __traits(getVirtualFunctions, D, "foo"))
writefln(typeid(typeof(t)));
alias typeof(__traits(getVirtualFunctions, D, "foo")) b;
foreach (t; b)
writefln(typeid(t));
auto i = __traits(getVirtualFunctions, d, "foo")[1](1);
writefln(i);
}Prints:
void()
int()
void()
int()
2parent
Takes a single argument which must evaluate to a symbol. The result is the symbol that is the parent of it.
classInstanceSize
Takes a single argument, which must evaluate to either a class type or an expression of class type. The result is of type size_t, and the value is the number of bytes in the runtime instance of the class type. It is based on the static type of a class, not the polymorphic type.
allMembers
Takes a single argument, which must evaluate to either a type or an expression of type. A tuple of string literals is returned, each of which is the name of a member of that type combined with all of the members of the base classes (if the type is a class). No name is repeated. Builtin properties are not included.
import std.stdio;
class D {
this() { }
~this() { }
void foo() { }
int foo(int) { return 0; }
}
void main() {
auto a = __traits(allMembers, D);
writefln(a);
// _ctor,_dtor,foo,print,toString,toHash,opCmp,opEquals
auto b = [ __traits(allMembers, D) ];
writefln(b);
// [_ctor,_dtor,foo,print,toString,toHash,opCmp,opEquals]
}The order in which the strings appear in the result is not defined.
derivedMembers
Takes a single argument, which must evaluate to either a type or an expression of type. A tuple of string literals is returned, each of which is the name of a member of that type. No name is repeated. Base class member names are not included. Builtin properties are not included.
import std.stdio;
class D {
this() { }
~this() { }
void foo() { }
int foo(int) { return 0; }
}
void main() {
auto a = __traits(derivedMembers, D);
writefln(a); // _ctor,_dtor,foo
}The order in which the strings appear in the result is not defined.
isSame
Takes two arguments and returns bool true if they are the same symbol, false if not.
import std.stdio;
struct S { }
int foo();
int bar();
void main() {
writefln(__traits(isSame, foo, foo)); // true
writefln(__traits(isSame, foo, bar)); // false
writefln(__traits(isSame, foo, S)); // false
writefln(__traits(isSame, S, S)); // true
writefln(__traits(isSame, std, S)); // false
writefln(__traits(isSame, std, std)); // true
}If the two arguments are expressions made up of literals or enums that evaluate to the same value, true is returned.
compiles
Returns a bool true if all of the arguments compile (are semantically correct). The arguments can be symbols, types, or expressions that are syntactically correct. The arguments cannot be statements or declarations.
If there are no arguments, the result is false.
import std.stdio;
struct S {
static int s1;
int s2;
}
int foo();
int bar();
void main() {
writefln(__traits(compiles)); // false
writefln(__traits(compiles, foo)); // true
writefln(__traits(compiles, foo + 1)); // true
writefln(__traits(compiles, &foo + 1)); // false
writefln(__traits(compiles, typeof(1))); // true
writefln(__traits(compiles, S.s1)); // true
writefln(__traits(compiles, S.s3)); // false
writefln(__traits(compiles, 1,2,3,int,long,std)); // true
writefln(__traits(compiles, 3[1])); // false
writefln(__traits(compiles, 1,2,3,int,long,3[1])); // false
}This is useful for:
- Giving better error messages inside generic code than the sometimes hard to follow compiler ones.
- Doing a finer grained specialization than template partial specialization allows for.
Error Handling
All programs have to deal with errors. Errors are unexpected conditions that are not part of the normal operation of a program. Examples of common errors are:Julius C'ster, I came, I coded, I crashed.
- Out of memory.
- Out of disk space.
- Invalid file name.
- Attempting to write to a read-only file.
- Attempting to read a non-existent file.
- Requesting a system service that is not supported.
The Error Handling Problem
The traditional C way of detecting and reporting errors is not traditional, it is ad-hoc and varies from function to function, including:To deal with these possible errors, tedious error handling code must be added to each function call. If an error happened, code must be written to recover from the error, and the error must be reported to the user in some user friendly fashion. If an error cannot be handled locally, it must be explicitly propagated back to its caller. The long list of errno values needs to be converted into appropriate text to be displayed. Adding all the code to do this can consume a large part of the time spent coding a project - and still, if a new errno value is added to the runtime system, the old code can not properly display a meaningful error message.
- Returning a NULL pointer.
- Returning a 0 value.
- Returning a non-zero error code.
- Requiring errno to be checked.
- Requiring that a function be called to check if the previous function failed.
Good error handling code tends to clutter up what otherwise would be a neat and clean looking implementation.
Even worse, good error handling code is itself error prone, tends to be the least tested (and therefore buggy) part of the project, and is frequently simply omitted. The end result is likely a "blue screen of death" as the program failed to deal with some unanticipated error.
Quick and dirty programs are not worth writing tedious error handling code for, and so such utilities tend to be like using a table saw with no blade guards.
What's needed is an error handling philosophy and methodology such that:
- It is standardized - consistent usage makes it more useful.
- The result is reasonable even if the programmer fails to check for errors.
- Old code can be reused with new code without having to modify the old code to be compatible with new error types.
- No errors get inadvertently ignored.
- ‘Quick and dirty’ utilities can be written that still correctly handle errors.
- It is easy to make the error handling source code look good.
The D Error Handling Solution
Let's first make some observations and assumptions about errors:The solution is to use exception handling to report errors. All errors are objects derived from abstract class Error. class Error has a pure virtual function called toString() which produces a char[] with a human readable description of the error.
- Errors are not part of the normal flow of a program. Errors are exceptional, unusual, and unexpected.
- Because errors are unusual, execution of error handling code is not performance critical.
- The normal flow of program logic is performance critical.
- All errors must be dealt with in some way, either by code explicitly written to handle them, or by some system default handling.
- The code that detects an error knows more about the error than the code that must recover from the error.
If code detects an error like "out of memory," then an Error is thrown with a message saying "Out of memory". The function call stack is unwound, looking for a handler for the Error. Finally blocks are executed as the stack is unwound. If an error handler is found, execution resumes there. If not, the default Error handler is run, which displays the message and terminates the program.
How does this meet our criteria?
How does this meet our assumptions about errors?
- It is standardized - consistent usage makes it more useful.
This is the D way, and is used consistently in the D runtime library and examples.- The result is reasonable result even if the programmer fails to check for errors.
If no catch handlers are there for the errors, then the program gracefully exits through the default error handler with an appropriate message.- Old code can be reused with new code without having to modify the old code to be compatible with new error types.
Old code can decide to catch all errors, or only specific ones, propagating the rest upwards. In any case, there is no more need to correlate error numbers with messages, the correct message is always supplied.- No errors get inadvertently ignored.
Error exceptions get handled one way or another. There is nothing like a NULL pointer return indicating an error, followed by trying to use that NULL pointer.- 'Quick and dirty' utilities can be written that still correctly handle errors.
Quick and dirty code need not write any error handling code at all, and don't need to check for errors. The errors will be caught, an appropriate message displayed, and the program gracefully shut down all by default.- It is easy to make the error handling source code look good.
The try/catch/finally statements look a lot nicer than endless if (error) goto errorhandler; statements.Using exceptions to handle errors leads to another issue - how to write exception safe programs. Here's how.
- Errors are not part of the normal flow of a program. Errors are exceptional, unusual, and unexpected.
D exception handling fits right in with that.- Because errors are unusual, execution of error handling code is not performance critical.
Exception handling stack unwinding is a relatively slow process.- The normal flow of program logic is performance critical.
Since the normal flow code does not have to check every function call for error returns, it can be realistically faster to use exception handling for the errors.- All errors must be dealt with in some way, either by code explicitly written to handle them, or by some system default handling.
If there's no handler for a particular error, it is handled by the runtime library default handler. If an error is ignored, it is because the programmer specifically added code to ignore an error, which presumably means it was intentional.- The code that detects an error knows more about the error than the code that must recover from the error.
There is no more need to translate error codes into human readable strings, the correct string is generated by the error detection code, not the error recovery code. This also leads to consistent error messages for the same error between applications.
Unit Tests
Unit tests are a series of test cases applied to a module to determine if it is working properly. Ideally, unit tests should be run every time a program is compiled.
Unit tests are a special function defined like:
unittest {
...test code...
}There can be any number of unit test functions in a module, including within struct, union and class declarations. They are executed in lexical order. Stylistically, a unit test for a function should appear immediately following it.
A compiler switch, such as -unittest for dmd, will cause the unittest test code to be compiled and incorporated into the resulting executable. The unittest code gets run after static initialization is run and before the main() function is called.
For example, given a class Sum that is used to add two values:
class Sum {
int add(int x, int y) { return x + y; }
unittest
{
Sum sum = new Sum;
assert(sum.add(3,4) == 7);
assert(sum.add(-2,0) == -2);
}
}Versioning
The version identifier unittest is predefined if the compilation is done with unit tests enabled.
Garbage Collection
D is a fully garbage collected language. That means that it is never necessary to free memory. Just allocate as needed, and the garbage collector will periodically return all unused memory to the pool of available memory.
C and C++ programmers accustomed to explicitly managing memory allocation and deallocation will likely be skeptical of the benefits and efficacy of garbage collection. Experience both with new projects written with garbage collection in mind, and converting existing projects to garbage collection shows that:
- Garbage collected programs are faster. This is counterintuitive, but the reasons are:
- Reference counting is a common solution to solve explicit memory allocation problems. The code to implement the increment and decrement operations whenever assignments are made is one source of slowdown. Hiding it behind smart pointer classes doesn't help the speed. (Reference counting methods are not a general solution anyway, as circular references never get deleted.)
- Destructors are used to deallocate resources acquired by an object. For most classes, this resource is allocated memory. With garbage collection, most destructors then become empty and can be discarded entirely.
- All those destructors freeing memory can become significant when objects are allocated on the stack. For each one, some mechanism must be established so that if an exception happens, the destructors all get called in each frame to release any memory they hold. If the destructors become irrelevant, then there's no need to set up special stack frames to handle exceptions, and the code runs faster.
- All the code necessary to manage memory can add up to quite a bit. The larger a program is, the less in the cache it is, the more paging it does, and the slower it runs.
- Garbage collection kicks in only when memory gets tight. When memory is not tight, the program runs at full speed and does not spend any time freeing memory.
- Modern garbage collectors are far more advanced now than the older, slower ones. Generational, copying collectors eliminate much of the inefficiency of early mark and sweep algorithms.
- Modern garbage collectors do heap compaction. Heap compaction tends to reduce the number of pages actively referenced by a program, which means that memory accesses are more likely to be cache hits and less swapping.
- Garbage collected programs do not suffer from gradual deterioration due to an accumulation of memory leaks.
- Garbage collectors reclaim unused memory, therefore they do not suffer from "memory leaks" which can cause long running applications to gradually consume more and more memory until they bring down the system. GC programs have longer term stability.
- Garbage collected programs have fewer hard-to-find pointer bugs. This is because there are no dangling references to freed memory. There is no code to explicitly manage memory, hence no bugs in such code.
- Garbage collected programs are faster to develop and debug, because there's no need for developing, debugging, testing, or maintaining the explicit deallocation code.
- Garbage collected programs can be significantly smaller, because there is no code to manage deallocation, and there is no need for exception handlers to deallocate memory.
Garbage collection is not a panacea. There are some downsides:
- It is not predictable when a collection gets run, so the program can arbitrarily pause.
- The time it takes for a collection to run is not bounded. While in practice it is very quick, this cannot be guaranteed.
- All threads other than the collector thread must be halted while the collection is in progress.
- Garbage collectors can keep around some memory that an explicit deallocator would not. In practice, this is not much of an issue since explicit deallocators usually have memory leaks causing them to eventually use far more memory, and because explicit deallocators do not normally return deallocated memory to the operating system anyway, instead just returning it to its own internal pool.
- Garbage collection should be implemented as a basic operating system kernel service. But since they are not, garbage collecting programs must carry around with them the garbage collection implementation. While this can be a shared DLL, it is still there.
These constraints are addressed by techniques outlined in Memory Management.
How Garbage Collection Works
The GC works by:
- Looking for all the pointer ‘roots’ into GC allocated memory.
- Recursively scanning all allocated memory pointed to by roots looking for more pointers into GC allocated memory.
- Freeing all GC allocated memory that has no active pointers to it.
- Possibly compacting the remaining used memory by copying the allocated objects (called a copying collector).
Interfacing Garbage Collected Objects With Foreign Code
The garbage collector looks for roots in:
- its static data segment
- the stacks and register contents of each thread
- any roots added by std.gc.addRoot() or std.gc.addRange()
If the only root of an object is held outside of this, then the collecter will miss it and free the memory.
To avoid this from happening,
- Maintain a root to the object in an area the collector does scan for roots.
- Add a root to the object using std.gc.addRoot() or std.gc.addRange().
- Reallocate and copy the object using the foreign code's storage allocator or using the C runtime library's malloc/free.
Pointers and the Garbage Collector
Pointers in D can be broadly divided into two categories: those that point to garbage collected memory, and those that do not. Examples of the latter are pointers created by calls to C's malloc(), pointers received from C library routines, pointers to static data, pointers to objects on the stack, etc. For those pointers, anything that is legal in C can be done with them.
For garbage collected pointers and references, however, there are some restrictions. These restrictions are minor, but they are intended to enable the maximum flexibility in garbage collector design.
Undefined behavior:
- Do not xor pointers with other values, like the xor pointer linked list trick used in C.
- Do not use the xor trick to swap two pointer values.
- Do not store pointers into non-pointer variables using casts and other tricks.
void* p;The garbage collector does not scan non-pointer types for roots.
...
int x = cast(int)p; // error: undefined behavior- Do not take advantage of alignment of pointers to store bit flags in the low order bits:
p = cast(void*)(cast(int)p | 1); // error: undefined behavior- Do not store into pointers values that may point into the garbage collected heap:
p = cast(void*)12345678; // error: undefined behaviorA copying garbage collector may change this value.- Do not store magic values into pointers, other than null.
- Do not write pointer values out to disk and read them back in again.
- Do not use pointer values to compute a hash function. A copying garbage collector can arbitrarily move objects around in memory, thus invalidating the computed hash value.
- Do not depend on the ordering of pointers:
if (p1 < p2) // error: undefined behaviorsince, again, the garbage collector can move objects around in memory.
...- Do not add or subtract an offset to a pointer such that the result points outside of the bounds of the garbage collected object originally allocated.
char* p = new char[10];
char* q = p + 6; // ok
q = p + 11; // error: undefined behavior
q = p - 1; // error: undefined behavior- Do not misalign pointers if those pointers may point into the gc heap, such as:
align (1) struct Foo {Misaligned pointers may be used if the underlying hardware supports them and the pointer is never used to point into the gc heap.
byte b;
char* p; // misaligned pointer
}- Do not use byte-by-byte memory copies to copy pointer values. This may result in intermediate conditions where there is not a valid pointer, and if the gc pauses the thread in such a condition, it can corrupt memory. Most implementations of memcpy() will work since the internal implementation of it does the copy in aligned chunks greater than or equal to a pointer size, but since this kind of implementation is not guaranteed by the C standard, use memcpy() only with extreme caution.
- Do not have pointers in a struct instance that point back to the same instance. The trouble with this is if the instance gets moved in memory, the pointer will point back to where it came from, with likely disastrous results.
Things that are reliable and can be done:
- Use a union to share storage with a pointer:
union U { void* ptr; int value }- A pointer to the start of a garbage collected object need not be maintained if a pointer to the interior of the object exists.
char[] p = new char[10];
char[] q = p[3..6];
// q is enough to hold on to the object, don't need to keep
// p as well.One can avoid using pointers anyway for most tasks. D provides features rendering most explicit pointer uses obsolete, such as reference objects, dynamic arrays, and garbage collection. Pointers are provided in order to interface successfully with C APIs and for some low level work.
Working with the Garbage Collector
Garbage collection doesn't solve every memory deallocation problem. For example, if a root to a large data structure is kept, the garbage collector cannot reclaim it, even if it is never referred to again. To eliminate this problem, it is good practice to set a reference or pointer to an object to null when no longer needed.
This advice applies only to static references or references embedded inside other objects. There is not much point for such stored on the stack to be nulled, since the collector doesn't scan for roots past the top of the stack, and because new stack frames are initialized anyway.
Object Pinning and a Moving Garbage Collector
Although D does not currently use a moving garbage collector, by following the rules listed above one can be implemented. No special action is required to pin objects. A moving collector will only move objects for which there are no ambiguous references, and for which it can update those references. All other objects will be automatically pinned.
D Operations That Involve the Garbage Collector
Some sections of code may need to avoid using the garbage collector. The following constructs may allocate memory using the garbage collector:
- NewExpression
- Array appending
- Array concatenation
- Array literals (except when used to initialize static data)
- Associative array literals
- Any insertion, removal, or lookups in an associative array
- Extracting keys or values from an associative array
- Taking the address of (i.e. making a delegate) a nested function that accesses variables in an outer scope
- A function literal that access variables in an outer scope
- An AssertExpression that fails its condition
References
Floating Point
Floating Point Intermediate Values
On many computers, greater precision operations do not take any longer than lesser precision operations, so it makes numerical sense to use the greatest precision available for internal temporaries. The philosophy is not to dumb down the language to the lowest common hardware denominator, but to enable the exploitation of the best capabilities of target hardware.
For floating point operations and expression intermediate values, a greater precision can be used than the type of the expression. Only the minimum precision is set by the types of the operands, not the maximum. Implementation Note: On Intel x86 machines, for example, it is expected (but not required) that the intermediate calculations be done to the full 80 bits of precision implemented by the hardware.
It's possible that, due to greater use of temporaries and common subexpressions, optimized code may produce a more accurate answer than unoptimized code.
Algorithms should be written to work based on the minimum precision of the calculation. They should not degrade or fail if the actual precision is greater. Float or double types, as opposed to the real (extended) type, should only be used for:
- reducing memory consumption for large arrays
- when speed is more important than accuracy
- data and function argument compatibility with C
Floating Point Constant Folding
Regardless of the type of the operands, floating point constant folding is done in real or greater precision. It is always done following IEEE 754 rules and round-to-nearest is used.
Floating point constants are internally represented in the implementation in at least real precision, regardless of the constant's type. The extra precision is available for constant folding. Committing to the precision of the result is done as late as possible in the compilation process. For example:
const float f = 0.2f;
writefln(f - 0.2);will print 0. A non-const static variable's value cannot be propagated at compile time, so:
static float f = 0.2f;
writefln(f - 0.2);will print 2.98023e-09. Hex floating point constants can also be used when specific floating point bit patterns are needed that are unaffected by rounding. To find the hex value of 0.2f:
import std.stdio;
void main() {
writefln("%a", 0.2f);
}which is 0x1.99999ap-3. Using the hex constant:
const float f = 0x1.99999ap-3f;
writefln(f - 0.2);prints 2.98023e-09.
Different compiler settings, optimization settings, and inlining settings can affect opportunities for constant folding, therefore the results of floating point calculations may differ depending on those settings.
Complex and Imaginary types
In existing languages, there is an astonishing amount of effort expended in trying to jam a complex type onto existing type definition facilities: templates, structs, operator overloading, etc., and it all usually ultimately fails. It fails because the semantics of complex operations can be subtle, and it fails because the compiler doesn't know what the programmer is trying to do, and so cannot optimize the semantic implementation.
This is all done to avoid adding a new type. Adding a new type means that the compiler can make all the semantics of complex work "right". The programmer then can rely on a correct (or at least fixable
) implementation of complex. Coming with the baggage of a complex type is the need for an imaginary type. An imaginary type eliminates some subtle semantic issues, and improves performance by not having to perform extra operations on the implied 0 real part.
Imaginary literals have an i suffix:
ireal j = 1.3i;There is no particular complex literal syntax, just add a real and imaginary type:
cdouble cd = 3.6 + 4i;
creal c = 4.5 + 2i;Complex, real and imaginary numbers have two properties:
Property Description .re get real part (0 for imaginary numbers) .im get imaginary part as a real (0 for real numbers)For example:
cd.re // == 4.5 double
cd.im // == 2 double
c.re // == 4.5 real
c.im // == 2 real
j.im // == 1.3 real
j.re // == 0 realRounding Control
IEEE 754 floating point arithmetic includes the ability to set 4 different rounding modes. These are accessible via the functions in std.c.fenv.
If the floating-point rounding mode is changed within a function, it must be restored before the function exits. If this rule is violated (for example, by the use of inline asm), the rounding mode used for subsequent calculations is undefined.
Exception Flags
IEEE 754 floating point arithmetic can set several flags based on what happened with a computation:
FE_INVALID FE_DENORMAL FE_DIVBYZERO FE_OVERFLOW FE_UNDERFLOW FE_INEXACTThese flags can be set/reset via the functions in std.c.fenv.
Floating Point Comparisons
In addition to the usual < <= > >= == != comparison operators, D adds more that are specific to floating point. These are !<>= <> <>= !<= !< !>= !> !<> and match the semantics for the NCEG extensions to C. See Floating point comparisons.
Floating Point Transformations
An implementation may perform transformations on floating point computations in order to reduce their strength, i.e. their runtime computation time. Because floating point math does not precisely follow mathematical rules, some transformations are not valid, even though some other programming languages still allow them.
The following transformations of floating point expressions are not allowed because under IEEE rules they could produce different results.
Disallowed Floating Point Transformations transformation comments x + 0 → x not valid if x is -0 x - 0 → x not valid if x is ±0 and rounding is towards -∞ -x ↔ 0 - x not valid if x is +0 x - x → 0 not valid if x is NaN or ±∞ x - y ↔ -(y - x) not valid because (1-1=+0) whereas -(1-1)=-0 x * 0 → 0 not valid if x is NaN or ±∞ x / c ↔ x * (1/c) valid if (1/c) yields an exact result x != x → false not valid if x is a NaN x == x → true not valid if x is a NaN x !op y ↔ !(x op y) not valid if x or y is a NaNOf course, transformations that would alter side effects are also invalid.
Inline Assembler
![]()
D, being a systems programming language, provides an inline assembler. The inline assembler is standardized for D implementations across the same CPU family, for example, the Intel Pentium inline assembler for a Win32 D compiler will be syntax compatible with the inline assembler for Linux running on an Intel Pentium.
Implementations of D on different architectures, however, are free to innovate upon the memory model, function call/return conventions, argument passing conventions, etc.
This document describes the x86 implementation of the inline assembler.
AsmInstruction:
Identifier : AsmInstruction
align IntegerExpression
even
naked
db Operands
ds Operands
di Operands
dl Operands
df Operands
dd Operands
de Operands
Opcode
Opcode Operands
Operands:
Operand
Operand , OperandsLabels
Assembler instructions can be labeled just like other statements. They can be the target of goto statements. For example:
void *pc;
asm
{
call L1 ;
L1: ;
pop EBX ;
mov pc[EBP],EBX ; // pc now points to code at L1
}align IntegerExpression
Causes the assembler to emit NOP instructions to align the next assembler instruction on an IntegerExpression boundary. IntegerExpression must evaluate at compile time to an integer that is a power of 2.
Aligning the start of a loop body can sometimes have a dramatic effect on the execution speed.
even
Causes the assembler to emit NOP instructions to align the next assembler instruction on an even boundary.
naked
Causes the compiler to not generate the function prolog and epilog sequences. This means such is the responsibility of inline assembly programmer, and is normally used when the entire function is to be written in assembler.
db, ds, di, dl, df, dd, de
These pseudo ops are for inserting raw data directly into the code. db is for bytes, ds is for 16 bit words, di is for 32 bit words, dl is for 64 bit words, df is for 32 bit floats, dd is for 64 bit doubles, and de is for 80 bit extended reals. Each can have multiple operands. If an operand is a string literal, it is as if there were length operands, where length is the number of characters in the string. One character is used per operand. For example:asm
{
db 5,6,0x83; // insert bytes 0x05, 0x06, and 0x83 into code
ds 0x1234; // insert bytes 0x34, 0x12
di 0x1234; // insert bytes 0x34, 0x12, 0x00, 0x00
dl 0x1234; // insert bytes 0x34, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
df 1.234; // insert float 1.234
dd 1.234; // insert double 1.234
de 1.234; // insert real 1.234
db "abc"; // insert bytes 0x61, 0x62, and 0x63
ds "abc"; // insert bytes 0x61, 0x00, 0x62, 0x00, 0x63, 0x00
}Opcodes
A list of supported opcodes is at the end.The following registers are supported. Register names are always in upper case.
Register:
AL AH AX EAX
BL BH BX EBX
CL CH CX ECX
DL DH DX EDX
BP EBP
SP ESP
DI EDI
SI ESI
ES CS SS DS GS FS
CR0 CR2 CR3 CR4
DR0 DR1 DR2 DR3 DR6 DR7
TR3 TR4 TR5 TR6 TR7
ST
ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)
MM0 MM1 MM2 MM3 MM4 MM5 MM6 MM7
XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7Special Cases
- lock, rep, repe, repne, repnz, repz
These prefix instructions do not appear in the same statement as the instructions they prefix; they appear in their own statement. For example:asm {
rep ;
movsb ;
}- pause
This opcode is not supported by the assembler, instead useasm {which produces the same result.
rep ;
nop ;
}- floating point ops
Use the two operand form of the instruction format;fdiv ST(1); // wrong
fmul ST; // wrong
fdiv ST,ST(1); // right
fmul ST,ST(0); // rightOperands
Operand:
AsmExp
AsmExp:
AsmLogOrExp
AsmLogOrExp ? AsmExp : AsmExp
AsmLogOrExp:
AsmLogAndExp
AsmLogAndExp || AsmLogAndExp
AsmLogAndExp:
AsmOrExp
AsmOrExp && AsmOrExp
AsmOrExp:
AsmXorExp
AsmXorExp | AsmXorExp
AsmXorExp:
AsmAndExp
AsmAndExp ^ AsmAndExp
AsmAndExp:
AsmEqualExp
AsmEqualExp & AsmEqualExp
AsmEqualExp:
AsmRelExp
AsmRelExp == AsmRelExp
AsmRelExp != AsmRelExp
AsmRelExp:
AsmShiftExp
AsmShiftExp < AsmShiftExp
AsmShiftExp <= AsmShiftExp
AsmShiftExp > AsmShiftExp
AsmShiftExp >= AsmShiftExp
AsmShiftExp:
AsmAddExp
AsmAddExp << AsmAddExp
AsmAddExp >> AsmAddExp
AsmAddExp >>> AsmAddExp
AsmAddExp:
AsmMulExp
AsmMulExp + AsmMulExp
AsmMulExp - AsmMulExp
AsmMulExp:
AsmBrExp
AsmBrExp * AsmBrExp
AsmBrExp / AsmBrExp
AsmBrExp % AsmBrExp
AsmBrExp:
AsmUnaExp
AsmBrExp [ AsmExp ]
AsmUnaExp:
AsmTypePrefix AsmExp
offsetof AsmExp
seg AsmExp
+ AsmUnaExp
- AsmUnaExp
! AsmUnaExp
~ AsmUnaExp
AsmPrimaryExp
AsmPrimaryExp:
IntegerLiteral
FloatLiteral
__LOCAL_SIZE
$
Register
DotIdentifier
DotIdentifier:
Identifier
Identifier . DotIdentifierThe operand syntax more or less follows the Intel CPU documentation conventions. In particular, the convention is that for two operand instructions the source is the right operand and the destination is the left operand. The syntax differs from that of Intel's in order to be compatible with the D language tokenizer and to simplify parsing.
The seg means load the segment number that the symbol is in. This is not relevant for flat model code. Instead, do a move from the relevant segment register.
Operand Types
AsmTypePrefix:
near ptr
far ptr
byte ptr
short ptr
int ptr
word ptr
dword ptr
qword ptr
float ptr
double ptr
real ptrIn cases where the operand size is ambiguous, as in:
add [EAX],3 ;it can be disambiguated by using an AsmTypePrefix:
add byte ptr [EAX],3 ;
add int ptr [EAX],7 ;far ptr is not relevant for flat model code.
Struct/Union/Class Member Offsets
To access members of an aggregate, given a pointer to the aggregate is in a register, use the qualified name of the member:
struct Foo { int a,b,c; }
int bar(Foo *f) {
asm {
mov EBX,f ;
mov EAX,Foo.b[EBX] ;
}
}Stack Variables
Stack variables (variables local to a function and allocated on the stack) are accessed via the name of the variable indexed by EBP:
int foo(int x) {
asm {
mov EAX,x[EBP] ; // loads value of parameter x into EAX
mov EAX,x ; // does the same thing
}
}If the [EBP] is omitted, it is assumed for local variables. If naked is used, this no longer holds.
Special Symbols
- $
Represents the program counter of the start of the next instruction. So,jmp $ ;branches to the instruction following the jmp instruction. The $ can only appear as the target of a jmp or call instruction.- __LOCAL_SIZE
This gets replaced by the number of local bytes in the local stack frame. It is most handy when the naked is invoked and a custom stack frame is programmed.Opcodes Supported
aaa aad aam aas adc add addpd addps addsd addss and andnpd andnps andpd andps arpl bound bsf bsr bswap bt btc btr bts call cbw cdq clc cld clflush cli clts cmc cmova cmovae cmovb cmovbe cmovc cmove cmovg cmovge cmovl cmovle cmovna cmovnae cmovnb cmovnbe cmovnc cmovne cmovng cmovnge cmovnl cmovnle cmovno cmovnp cmovns cmovnz cmovo cmovp cmovpe cmovpo cmovs cmovz cmp cmppd cmpps cmps cmpsb cmpsd cmpss cmpsw cmpxch8b cmpxchg comisd comiss cpuid cvtdq2pd cvtdq2ps cvtpd2dq cvtpd2pi cvtpd2ps cvtpi2pd cvtpi2ps cvtps2dq cvtps2pd cvtps2pi cvtsd2si cvtsd2ss cvtsi2sd cvtsi2ss cvtss2sd cvtss2si cvttpd2dq cvttpd2pi cvttps2dq cvttps2pi cvttsd2si cvttss2si cwd cwde da daa das db dd de dec df di div divpd divps divsd divss dl dq ds dt dw emms enter f2xm1 fabs fadd faddp fbld fbstp fchs fclex fcmovb fcmovbe fcmove fcmovnb fcmovnbe fcmovne fcmovnu fcmovu fcom fcomi fcomip fcomp fcompp fcos fdecstp fdisi fdiv fdivp fdivr fdivrp feni ffree fiadd ficom ficomp fidiv fidivr fild fimul fincstp finit fist fistp fisub fisubr fld fld1 fldcw fldenv fldl2e fldl2t fldlg2 fldln2 fldpi fldz fmul fmulp fnclex fndisi fneni fninit fnop fnsave fnstcw fnstenv fnstsw fpatan fprem fprem1 fptan frndint frstor fsave fscale fsetpm fsin fsincos fsqrt fst fstcw fstenv fstp fstsw fsub fsubp fsubr fsubrp ftst fucom fucomi fucomip fucomp fucompp fwait fxam fxch fxrstor fxsave fxtract fyl2x fyl2xp1 hlt idiv imul in inc ins insb insd insw int into invd invlpg iret iretd ja jae jb jbe jc jcxz je jecxz jg jge jl jle jmp jna jnae jnb jnbe jnc jne jng jnge jnl jnle jno jnp jns jnz jo jp jpe jpo js jz lahf lar ldmxcsr lds lea leave les lfence lfs lgdt lgs lidt lldt lmsw lock lods lodsb lodsd lodsw loop loope loopne loopnz loopz lsl lss ltr maskmovdqu maskmovq maxpd maxps maxsd maxss mfence minpd minps minsd minss mov movapd movaps movd movdq2q movdqa movdqu movhlps movhpd movhps movlhps movlpd movlps movmskpd movmskps movntdq movnti movntpd movntps movntq movq movq2dq movs movsb movsd movss movsw movsx movupd movups movzx mul mulpd mulps mulsd mulss neg nop not or orpd orps out outs outsb outsd outsw packssdw packsswb packuswb paddb paddd paddq paddsb paddsw paddusb paddusw paddw pand pandn pavgb pavgw pcmpeqb pcmpeqd pcmpeqw pcmpgtb pcmpgtd pcmpgtw pextrw pinsrw pmaddwd pmaxsw pmaxub pminsw pminub pmovmskb pmulhuw pmulhw pmullw pmuludq pop popa popad popf popfd por prefetchnta prefetcht0 prefetcht1 prefetcht2 psadbw pshufd pshufhw pshuflw pshufw pslld pslldq psllq psllw psrad psraw psrld psrldq psrlq psrlw psubb psubd psubq psubsb psubsw psubusb psubusw psubw punpckhbw punpckhdq punpckhqdq punpckhwd punpcklbw punpckldq punpcklqdq punpcklwd push pusha pushad pushf pushfd pxor rcl rcpps rcpss rcr rdmsr rdpmc rdtsc rep repe repne repnz repz ret retf rol ror rsm rsqrtps rsqrtss sahf sal sar sbb scas scasb scasd scasw seta setae setb setbe setc sete setg setge setl setle setna setnae setnb setnbe setnc setne setng setnge setnl setnle setno setnp setns setnz seto setp setpe setpo sets setz sfence sgdt shl shld shr shrd shufpd shufps sidt sldt smsw sqrtpd sqrtps sqrtsd sqrtss stc std sti stmxcsr stos stosb stosd stosw str sub subpd subps subsd subss sysenter sysexit test ucomisd ucomiss ud2 unpckhpd unpckhps unpcklpd unpcklps verr verw wait wbinvd wrmsr xadd xchg xlat xlatb xor xorpd xorpsPentium 4 (Prescott) Opcodes Supported
addsubpd addsubps fisttp haddpd haddps hsubpd hsubps lddqu monitor movddup movshdup movsldup mwaitAMD Opcodes Supported
pavgusb pf2id pfacc pfadd pfcmpeq pfcmpge pfcmpgt pfmax pfmin pfmul pfnacc pfpnacc pfrcp pfrcpit1 pfrcpit2 pfrsqit1 pfrsqrt pfsub pfsubr pi2fd pmulhrw pswapd
Embedded Documentation
The D programming language enables embedding both contracts and test code along side the actual code, which helps to keep them all consistent with each other. One thing lacking is the documentation, as ordinary comments are usually unsuitable for automated extraction and formatting into manual pages. Embedding the user documentation into the source code has important advantages, such as not having to write the documentation twice, and the likelihood of the documentation staying consistent with the code.
Some existing approaches to this are:
- Doxygen which already has some support for D
- Java's Javadoc, probably the most well-known
- C#'s embedded XML
- Other documentation tools
D's goals for embedded documentation are:
- It looks good as embedded documentation, not just after it is extracted and processed.
- It's easy and natural to write, i.e. minimal reliance on <tags> and other clumsy forms one would never see in a finished document.
- It does not repeat information that the compiler already knows from parsing the code.
- It doesn't rely on embedded HTML, as such will impede extraction and formatting for other purposes.
- It's based on existing D comment forms, so it is completely independent of parsers only interested in D code.
- It should look and feel different from code, so it won't be visually confused with code.
- It should be possible for the user to use Doxygen or other documentation extractor if desired.
Specification
The specification for the form of embedded documentation comments only specifies how information is to be presented to the compiler. It is implementation-defined how that information is used and the form of the final presentation. Whether the final presentation form is an HTML web page, a man page, a PDF file, etc. is not specified as part of the D Programming Language.
Phases of Processing
Embedded documentation comments are processed in a series of phases:
- Lexical - documentation comments are identified and attached to tokens.
- Parsing - documentation comments are associated with specific declarations and combined.
- Sections - each documentation comment is divided up into a sequence of sections.
- Special sections are processed.
- Highlighting of non-special sections is done.
- All sections for the module are combined.
- Macro text substitution is performed to produce the final result.
Lexical
Embedded documentation comments are one of the following forms:
- /** ... */ The two *'s after the opening /
- /++ ... +/ The two +'s after the opening /
- /// The three slashes
The following are all embedded documentation comments:
/// This is a one line documentation comment.
/** So is this. */
/++ And this. +/
/**
This is a brief documentation comment.
*/
/**
* The leading * on this line is not part of the documentation comment.
*/
/*********************************
The extra *'s immediately following the /** are not
part of the documentation comment.
*/
/++
This is a brief documentation comment.
+/
/++
+ The leading + on this line is not part of the documentation comment.
+/
/+++++++++++++++++++++++++++++++++
The extra +'s immediately following the / ++ are not
part of the documentation comment.
+/
/**************** Closing *'s are not part *****************/The extra *'s and +'s on the comment opening, closing and left margin are ignored and are not part of the embedded documentation. Comments not following one of those forms are not documentation comments.
Parsing
Each documentation comment is associated with a declaration. If the documentation comment is on a line by itself or with only whitespace to the left, it refers to the next declaration. Multiple documentation comments applying to the same declaration are concatenated. Documentation comments not associated with a declaration are ignored. Documentation comments preceding the ModuleDeclaration apply to the entire module. If the documentation comment appears on the same line to the right of a declaration, it applies to that.
If a documentation comment for a declaration consists only of the identifier ditto then the documentation comment for the previous declaration at the same declaration scope is applied to this declaration as well.
If there is no documentation comment for a declaration, that declaration may not appear in the output. To ensure it does appear in the output, put an empty declaration comment for it.
int a; /// documentation for a; b has no documentation
int b;
/** documentation for c and d */
/** more documentation for c and d */
int c;
/** ditto */
int d;
/** documentation for e and f */ int e;
int f; /// ditto
/** documentation for g */
int g; /// more documentation for g
/// documentation for C and D
class C {
int x; /// documentation for C.x
/** documentation for C.y and C.z */
int y;
int z; /// ditto
}
/// ditto
class D { }Sections
The document comment is a series of Sections. A Section is a name that is the first non-blank character on a line immediately followed by a ':'. This name forms the section name. The section name is not case sensitive.
Summary
The first section is the Summary, and does not have a section name. It is first paragraph, up to a blank line or a section name. While the summary can be any length, try to keep it to one line. The Summary section is optional.
Description
The next unnamed section is the Description. It consists of all the paragraphs following the Summary until a section name is encountered or the end of the comment.
While the Description section is optional, there cannot be a Description without a Summary section.
/***********************************
* Brief summary of what
* myfunc does, forming the summary section.
*
* First paragraph of synopsis description.
*
* Second paragraph of
* synopsis description.
*/
void myfunc() { }Named sections follow the Summary and Description unnamed sections.
Standard Sections
For consistency and predictability, there are several standard sections. None of these are required to be present.
- Authors:
Lists the author(s) of the declaration./**
* Authors: Melvin D. Nerd, melvin@mailinator.com
*/- Bugs:
Lists any known bugs./**
* Bugs: Doesn't work for negative values.
*/- Date:
Specifies the date of the current revision. The date should be in a form parseable by std.date./**
* Date: March 14, 2003
*/- Deprecated:
Provides an explanation for and corrective action to take if the associated declaration is marked as deprecated./**
* Deprecated: superseded by function bar().
*/
deprecated void foo() { ... }- Examples:
Any usage examples/**
* Examples:
* --------------------
* writefln("3"); // writes '3' to stdout
* --------------------
*/- History:
Revision history./**
* History:
* V1 is initial version
*
* V2 added feature X
*/- License:
Any license information for copyrighted code./**
* License: use freely for any purpose
*/
void bar() { ... }- Returns:
Explains the return value of the function. If the function returns void, don't redundantly document it./**
* Read the file.
* Returns: The contents of the file.
*/
void[] readFile(char[] filename) { ... }- See_Also:
List of other symbols and URL's to related items./**
* See_Also:
* foo, bar, http://www.digitalmars.com/d/phobos/index.html
*/- Standards:
If this declaration is compliant with any particular standard, the description of it goes here./**
* Standards: Conforms to DSPEC-1234
*/- Throws:
Lists exceptions thrown and under what circumstances they are thrown./**
* Write the file.
* Throws: WriteException on failure.
*/
void writeFile(char[] filename) { ... }- Version:
Specifies the current version of the declaration./**
* Version: 1.6a
*/Special Sections
Some sections have specialized meanings and syntax.
- Copyright:
This contains the copyright notice. The macro COPYRIGHT is set to the contents of the section when it documents the module declaration. The copyright section only gets this special treatment when it is for the module declaration./** Copyright: Public Domain */
module foo;- Params:
Function parameters can be documented by listing them in a params section. Each line that starts with an identifier followed by an '=' starts a new parameter description. A description can span multiple lines./***********************************
* foo does this.
* Params:
* x = is for this
* and not for that
* y = is for that
*/
void foo(int x, int y)
{
}- Macros:
The macros section follows the same syntax as the Params: section. It's a series of NAME=value pairs. The NAME is the macro name, and value is the replacement text./**
* Macros:
* FOO = now is the time for
* all good men
* BAR = bar
* MAGENTA = <font color=magenta></font>
*/Highlighting
Embedded Comments
The documentation comments can themselves be commented using the $(DDOC_COMMENT comment text) syntax. These comments do not nest.
Embedded Code
D code can be embedded using lines with at least three hyphens in them to delineate the code section:
/++++++++++++++++++++++++
+ Our function.
+ Example:
+ --------------------------
+ import std.stdio;
+
+ void foo()
+ {
+ writefln("foo!"); /* print the string */
+ }
+ --------------------------
+/Note that the documentation comment uses the /++ ... +/ form so that /* ... */ can be used inside the code section.
Embedded HTML
HTML can be embedded into the documentation comments, and it will be passed through to the HTML output unchanged. However, since it is not necessarily true that HTML will be the desired output format of the embedded documentation comment extractor, it is best to avoid using it where practical.
/** Example of embedded HTML:
** <li> <a href="http://www.digitalmars.com">Digital Mars</a> </li>
* <li> <a href="http://www.classicempire.com">Empire</a> </li>
*
*/Emphasis
Identifiers in documentation comments that are function parameters or are names that are in scope at the associated declaration are emphasized in the output. This emphasis can take the form of italics, boldface, a hyperlink, etc. How it is emphasized depends on what it is - a function parameter, type, D keyword, etc. To prevent unintended emphasis of an identifier, it can be preceded by an underscore (_). The underscore will be stripped from the output.
Character Entities
Some characters have special meaning to the documentation processor, to avoid confusion it can be best to replace them with their corresponding character entities:
Characters and Entities Character Entity < < > > & &It is not necessary to do this inside a code section, or if the special character is not immediately followed by a # or a letter.
No Documentation
No documentation is generated for the following constructs, even if they have a documentation comment:
- Invariants
- Postblits
- Destructors
- Static constructors and static destructors
- Class info, type info, and module info
Macros
The documentation comment processor includes a simple macro text preprocessor. When a $(NAME) appears in section text it is replaced with NAME's corresponding replacement text. The replacement text is then recursively scanned for more macros. If a macro is recursively encountered, with no argument or with the same argument text as the enclosing macro, it is replaced with no text. Macro invocations that cut across replacement text boundaries are not expanded. If the macro name is undefined, the replacement text has no characters in it. If a $(NAME) is desired to exist in the output without being macro expanded, the $ should be replaced with $.
Macros can have arguments. Any text from the end of the identifier to the closing ‘)’ is the $0 argument. A $0 in the replacement text is replaced with the argument text. If there are commas in the argument text, $1 will represent the argument text up to the first comma, $2 from the first comma to the second comma, etc., up to $9. $+ represents the text from the first comma to the closing ‘)’. The argument text can contain nested parentheses, "" or '' strings, comments, or tags. If stray, unnested parentheses are used, they can be replaced with the entity ( for ( and ) for ).
Macro definitions come from the following sources, in the specified order:
- Predefined macros.
- Definitions from file specified by sc.ini's or dmd.conf DDOCFILE setting.
- Definitions from *.ddoc files specified on the command line.
- Runtime definitions generated by Ddoc.
- Definitions from any Macros: sections.
Macro redefinitions replace previous definitions of the same name. This means that the sequence of macro definitions from the various sources forms a hierarchy.
Macro names beginning with "D_" and "DDOC_" are reserved.
Predefined Macros
These are hardwired into Ddoc, and represent the minimal definitions needed by Ddoc to format and highlight the presentation. The definitions are for simple HTML.
B = <b>$0</b>
I = <i>$0</i>
U = <u>$0</u>
P = <p>$0</p>
DL = <dl>$0</dl>
DT = <dt>$0</dt>
DD = <dd>$0</dd>
TABLE = <table>$0</table>
TR = <tr>$0</tr>
TH = <th>$0</th>
TD = <td>$0</td>
OL = <ol>$0</ol>
UL = <ul>$0</ul>
LI = <li>$0</li>
BIG = <big>$0</big>
SMALL = <small>$0</small>
BR = <br>
LINK = <a href="$0">$0</a>
LINK2 = <a href="$1">$+</a>
LPAREN= (
RPAREN= )
RED = <font color=red>$0</font>
BLUE = <font color=blue>$0</font>
GREEN = <font color=green>$0</font>
YELLOW =<font color=yellow>$0</font>
BLACK = <font color=black>$0</font>
WHITE = <font color=white>$0</font>
D_CODE = <pre class="d_code">$0</pre>
D_COMMENT = $(GREEN $0)
D_STRING = $(RED $0)
D_KEYWORD = $(BLUE $0)
D_PSYMBOL = $(U $0)
D_PARAM = $(I $0)
DDOC = <html><head>
<META http-equiv="content-type" content="text/html; charset=utf-8">
<title>$(TITLE)</title>
</head><body>
<h1>$(TITLE)</h1>
$(BODY)
</body></html>
DDOC_COMMENT = <!-- $0 -->
DDOC_DECL = $(DT $(BIG $0))
DDOC_DECL_DD = $(DD $0)
DDOC_DITTO = $(BR)$0
DDOC_SECTIONS = $0
DDOC_SUMMARY = $0$(BR)$(BR)
DDOC_DESCRIPTION = $0$(BR)$(BR)
DDOC_AUTHORS = $(B Authors:)$(BR)
$0$(BR)$(BR)
DDOC_BUGS = $(RED BUGS:)$(BR)
$0$(BR)$(BR)
DDOC_COPYRIGHT = $(B Copyright:)$(BR)
$0$(BR)$(BR)
DDOC_DATE = $(B Date:)$(BR)
$0$(BR)$(BR)
DDOC_DEPRECATED = $(RED Deprecated:)$(BR)
$0$(BR)$(BR)
DDOC_EXAMPLES = $(B Examples:)$(BR)
$0$(BR)$(BR)
DDOC_HISTORY = $(B History:)$(BR)
$0$(BR)$(BR)
DDOC_LICENSE = $(B License:)$(BR)
$0$(BR)$(BR)
DDOC_RETURNS = $(B Returns:)$(BR)
$0$(BR)$(BR)
DDOC_SEE_ALSO = $(B See Also:)$(BR)
$0$(BR)$(BR)
DDOC_STANDARDS = $(B Standards:)$(BR)
$0$(BR)$(BR)
DDOC_THROWS = $(B Throws:)$(BR)
$0$(BR)$(BR)
DDOC_VERSION = $(B Version:)$(BR)
$0$(BR)$(BR)
DDOC_SECTION_H = $(B $0)$(BR)$(BR)
DDOC_SECTION = $0$(BR)$(BR)
DDOC_MEMBERS = $(DL $0)
DDOC_MODULE_MEMBERS = $(DDOC_MEMBERS $0)
DDOC_CLASS_MEMBERS = $(DDOC_MEMBERS $0)
DDOC_STRUCT_MEMBERS = $(DDOC_MEMBERS $0)
DDOC_ENUM_MEMBERS = $(DDOC_MEMBERS $0)
DDOC_TEMPLATE_MEMBERS = $(DDOC_MEMBERS $0)
DDOC_PARAMS = $(B Params:)$(BR)\n$(TABLE $0)$(BR)
DDOC_PARAM_ROW = $(TR $0)
DDOC_PARAM_ID = $(TD $0)
DDOC_PARAM_DESC = $(TD $0)
DDOC_BLANKLINE = $(BR)$(BR)
DDOC_PSYMBOL = $(U $0)
DDOC_KEYWORD = $(B $0)
DDOC_PARAM = $(I $0)Ddoc does not generate HTML code. It formats into the basic formatting macros, which (in their predefined form) are then expanded into HTML. If output other than HTML is desired, then these macros need to be redefined.
Basic Formatting Macros B boldface the argument I italicize the argument U underline the argument P argument is a paragraph DL argument is a definition list DT argument is a definition in a definition list DD argument is a description of a definition TABLE argument is a table TR argument is a row in a table TH argument is a header entry in a row TD argument is a data entry in a row OL argument is an ordered list UL argument is an unordered list LI argument is an item in a list BIG argument is one font size bigger SMALL argument is one font size smaller BR start new line LINK generate clickable link on argument LINK2 generate clickable link, first arg is address RED argument is set to be red BLUE argument is set to be blue GREEN argument is set to be green YELLOW argument is set to be yellow BLACK argument is set to be black WHITE argument is set to be white D_CODE argument is D code DDOC overall template for outputDDOC is special in that it specifies the boilerplate into which the entire generated text is inserted (represented by the Ddoc generated macro BODY). For example, in order to use a style sheet, DDOC would be redefined as:
DDOC = <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html><head>
<META http-equiv="content-type" content="text/html; charset=utf-8">
<title>$(TITLE)</title>
<link rel="stylesheet" type="text/css" href="style.css">
</head><body>
<h1>$(TITLE)</h1>
$(BODY)
</body></html>DDOC_COMMENT is used to insert comments into the output file.
Highlighting of D code is performed by the following macros:
D Code Formatting Macros D_COMMENT Highlighting of comments D_STRING Highlighting of string literals D_KEYWORD Highlighting of D keywords D_PSYMBOL Highlighting of current declaration name D_PARAM Highlighting of current function declaration parametersThe highlighting macros start with DDOC_. They control the formatting of individual parts of the presentation.
Ddoc Section Formatting Macros DDOC_DECL Highlighting of the declaration. DDOC_DECL_DD Highlighting of the description of a declaration. DDOC_DITTO Highlighting of ditto declarations. DDOC_SECTIONS Highlighting of all the sections. DDOC_SUMMARY Highlighting of the summary section. DDOC_DESCRIPTION Highlighting of the description section. DDOC_AUTHORS .. DDOC_VERSION Highlighting of the corresponding standard section. DDOC_SECTION_H Highlighting of the section name of a non-standard section. DDOC_SECTION Highlighting of the contents of a non-standard section. DDOC_MEMBERS Default highlighting of all the members of a class, struct, etc. DDOC_MODULE_MEMBERS Highlighting of all the members of a module. DDOC_CLASS_MEMBERS Highlighting of all the members of a class. DDOC_STRUCT_MEMBERS Highlighting of all the members of a struct. DDOC_ENUM_MEMBERS Highlighting of all the members of an enum. DDOC_TEMPLATE_MEMBERS Highlighting of all the members of a template. DDOC_PARAMS Highlighting of a function parameter section. DDOC_PARAM_ROW Highlighting of a name=value function parameter. DDOC_PARAM_ID Highlighting of the parameter name. DDOC_PARAM_DESC Highlighting of the parameter value. DDOC_PSYMBOL Highlighting of declaration name to which a particular section is referring. DDOC_KEYWORD Highlighting of D keywords. DDOC_PARAM Highlighting of function parameters. DDOC_BLANKLINE Inserts a blank line.For example, one could redefine DDOC_SUMMARY:
DDOC_SUMMARY = $(GREEN $0)And all the summary sections will now be green.
Macro Definitions from sc.ini's DDOCFILE
A text file of macro definitions can be created, and specified in sc.ini:
DDOCFILE=myproject.ddocMacro Definitions from .ddoc Files on the Command Line
File names on the DMD command line with the extension .ddoc are text files that are read and processed in order.
Macro Definitions Generated by Ddoc
Generated Macro Definitions Macro Name Contents BODY Set to the generated document text. TITLE Set to the module name. DATETIME Set to the current date and time. YEAR Set to the current year. COPYRIGHT Set to the contents of any Copyright: section that is part of the module comment. DOCFILENAME Set to the name of the generated output file.Using Ddoc for other Documentation
Ddoc is primarily designed for use in producing documentation from embedded comments. It can also, however, be used for processing other general documentation. The reason for doing this would be to take advantage of the macro capability of Ddoc and the D code syntax highlighting capability.
If the .d source file starts with the string "Ddoc" then it is treated as general purpose documentation, not as a D code source file. From immediately after the "Ddoc" string to the end of the file or any "Macros:" section forms the document. No automatic highlighting is done to that text, other than highlighting of D code embedded between lines delineated with --- lines. Only macro processing is done.
Much of the D documentation itself is generated this way, including this page. Such documentation is marked at the bottom as being generated by Ddoc.
References
CandyDoc is a very nice example of how one can customize the Ddoc results with macros and style sheets.
Interfacing to C
D is designed to fit comfortably with a C compiler for the target system. D makes up for not having its own VM by relying on the target environment's C runtime library. It would be senseless to attempt to port to D or write D wrappers for the vast array of C APIs available. How much easier it is to just call them directly.
This is done by matching the C compiler's data types, layouts, and function call/return sequences.
Calling C Functions
C functions can be called directly from D. There is no need for wrapper functions, argument swizzling, and the C functions do not need to be put into a separate DLL.
The C function must be declared and given a calling convention, most likely the "C" calling convention, for example:
extern (C) int strcmp(char* string1, char* string2);and then it can be called within D code in the obvious way:
import std.string;
int myDfunction(char[] s) {
return strcmp(std.string.toStringz(s), "foo");
}There are several things going on here:
- D understands how C function names are "mangled" and the correct C function call/return sequence.
- C functions cannot be overloaded with another C function with the same name.
- There are no __cdecl, __far, __stdcall, __declspec, or other such C type modifiers in D. These are handled by attributes, such as extern (C).
- There are no const or volatile type modifiers in D. To declare a C function that uses those type modifiers, just drop those keywords from the declaration.
- Strings are not 0 terminated in D. See "Data Type Compatibility" for more information about this. However, string literals in D are 0 terminated.
C code can correspondingly call D functions, if the D functions use an attribute that is compatible with the C compiler, most likely the extern (C):
// myfunc() can be called from any C function
extern (C) {
void myfunc(int a, int b) {
...
}
}Storage Allocation
C code explicitly manages memory with calls to malloc() and free(). D allocates memory using the D garbage collector, so no explicit free's are necessary.
D can still explicitly allocate memory using std.c.stdlib.malloc() and std.c.stdlib.free(), these are useful for connecting to C functions that expect malloc'd buffers, etc.
If pointers to D garbage collector allocated memory are passed to C functions, it's critical to ensure that that memory will not be collected by the garbage collector before the C function is done with it. This is accomplished by:
- Making a copy of the data using std.c.stdlib.malloc() and passing the copy instead.
- Leaving a pointer to it on the stack (as a parameter or automatic variable), as the garbage collector will scan the stack.
- Leaving a pointer to it in the static data segment, as the garbage collector will scan the static data segment.
- Registering the pointer with the garbage collector with the std.gc.addRoot() or std.gc.addRange() calls.
An interior pointer to the allocated memory block is sufficient to let the GC know the object is in use; i.e. it is not necessary to maintain a pointer to the beginning of the allocated memory.
The garbage collector does not scan the stacks of threads not created by the D Thread interface. Nor does it scan the data segments of other DLL's, etc.
Data Type Compatibility
D And C Type Equivalence D C 32 bit 64 bit void void byte signed char ubyte unsigned char char char (chars are unsigned in D) wchar wchar_t (when sizeof(wchar_t) is 2) dchar wchar_t (when sizeof(wchar_t) is 4) short short ushort unsigned short int int uint unsigned long long long long c_ulong (in core.stdc.config) ulong ulong unsigned long long unsigned long float float double double real long double struct struct union union enum enum class no equivalent type* type * type[dim] type[dim] type[dim]* type(*)[dim] type[] no equivalent type[type] no equivalent type function(parameters) type(*)(parameters) type delegate(parameters) no equivalent size_t size_t ptrdiff_t ptrdiff_tThese equivalents hold for most C compilers. The C standard does not pin down the sizes of the types, so some care is needed.
Passing D Array Arguments to C Functions
In C, arrays are passed to functions as pointers even if the function prototype says its an array. In D, static arrays are passed by value, not by reference. Thus, the function prototype must be adjusted to match what C expects.
D And C Function Prototype Equivalence D type C type T* T[] ref T[dim] T[dim]For example:
void foo(int a[3]) { ... } // C codeextern (C)
{
void foo(ref int[3] a); // D prototype
}Calling printf()
This mostly means checking that the printf format specifier matches the corresponding D data type. Although printf is designed to handle 0 terminated strings, not D dynamic arrays of chars, it turns out that since D dynamic arrays are a length followed by a pointer to the data, the %.*s format works:
void foo(char[] string) {
printf("my string is: %.*s\n", string.length, string.ptr);
}The printf format string literal in the example doesn't end with '\0'. This is because string literals, when they are not part of an initializer to a larger data structure, have a '\0' character helpfully stored after the end of them.
An improved D function for formatted output is std.stdio.writef().
Structs and Unions
D structs and unions are analogous to C's.
C code often adjusts the alignment and packing of struct members with a command line switch or with various implementation specific #pragma's. D supports explicit alignment attributes that correspond to the C compiler's rules. Check what alignment the C code is using, and explicitly set it for the D struct declaration.
D does not support bit fields. If needed, they can be emulated with shift and mask operations. htod will convert bit fields to inline functions that do the right shift and masks.
Interfacing to C++
While D is fully capable of interfacing to C, its ability to interface to C++ is much more limited. There are three ways to do it:
- Use C++'s ability to create a C interface, and then use D's ability to interface with C to access that interface.
- Use C++'s ability to create a COM interface, and then use D's ability to interface with COM to access that interface.
- Use the limited ability described here to connect directly to C++ functions and classes.
The General Idea
Being 100% compatible with C++ means more or less adding a fully functional C++ compiler front end to D. Anecdotal evidence suggests that writing such is a minimum of a 10 man-year project, essentially making a D compiler with such capability unimplementable. Other languages looking to hook up to C++ face the same problem, and the solutions have been:
- Support the COM interface (but that only works for Windows).
- Laboriously construct a C wrapper around the C++ code.
- Use an automated tool such as SWIG to construct a C wrapper.
- Reimplement the C++ code in the other language.
- Give up.
D takes a pragmatic approach that assumes a couple modest accommodations can solve a significant chunk of the problem:
- matching C++ name mangling conventions
- matching C++ function calling conventions
- matching C++ virtual function table layout for single inheritance
Calling C++ Global Functions From D
Given a C++ function in a C++ source file:
#include <iostream>
using namespace std;
int foo(int i, int j, int k) {
cout << "i = " << i << endl;
cout << "j = " << j << endl;
cout << "k = " << k << endl;
return 7;
}In the corresponding D code, foo is declared as having C++ linkage and function calling conventions:
extern (C++) int foo(int i, int j, int k);and then it can be called within the D code:
extern (C++) int foo(int i, int j, int k);
void main() {
foo(1,2,3);
}Compiling the two files, the first with a C++ compiler, the second with a D compiler, linking them together, and then running it yields:
i = 1
j = 2
k = 3There are several things going on here:
- D understands how C++ function names are "mangled" and the correct C++ function call/return sequence.
- Because modules are not part of C++, each function with C++ linkage must be globally unique within the program.
- There are no __cdecl, __far, __stdcall, __declspec, or other such nonstandard C++ extensions in D.
- There are no volatile type modifiers in D.
- Strings are not 0 terminated in D. See "Data Type Compatibility" for more information about this. However, string literals in D are 0 terminated.
C++ functions that reside in namespaces cannot be direcly called from D.
Calling Global D Functions From C++
To make a D function accessible from C++, give it C++ linkage:
import std.stdio;
extern (C++) int foo(int i, int j, int k) {
writefln("i = %s", i);
writefln("j = %s", j);
writefln("k = %s", k);
return 1;
}
extern (C++) void bar();
void main() {
bar();
}The C++ end looks like:
int foo(int i, int j, int k);
void bar() {
foo(6, 7, 8);
}Compiling, linking, and running produces the output:
i = 6
j = 7
k = 8Classes
D classes are singly rooted by Object, and have an incompatible layout from C++ classes. D interfaces, however, are very similar to C++ single inheritance class heirarchies. So, a D interface with the attribute of extern (C++) will have a virtual function pointer table (vtbl[]) that exactly matches C++'s. A regular D interface has a vtbl[] that differs in that the first entry in the vtbl[] is a pointer to D's RTTI info, whereas in C++ the first entry points to the first virtual function.
Calling C++ Virtual Functions From D
Given C++ source code defining a class like:
#include <iostream>
using namespace std;
class D {
public:
virtual int bar(int i, int j, int k)
{
cout << "i = " << i << endl;
cout << "j = " << j << endl;
cout << "k = " << k << endl;
return 8;
}
};
D *getD() {
D *d = new D();
return d;
}We can get at it from D code like:
extern (C++) {
interface D {
int bar(int i, int j, int k);
}
D getD();
}
void main() {
D d = getD();
d.bar(9,10,11);
}Calling D Virtual Functions From C++
Given D code like:
extern (C++) int callE(E);
extern (C++) interface E {
int bar(int i, int j, int k);
}
class F : E {
extern (C++) int bar(int i, int j, int k)
{
writefln("i = ", i);
writefln("j = ", j);
writefln("k = ", k);
return 8;
}
}
void main() {
F f = new F();
callE(f);
}The C++ code to access it looks like:
class E {
public:
virtual int bar(int i, int j, int k);
};
int callE(E *e) {
return e->bar(11,12,13);
}Note:
- non-virtual functions, and static member functions, cannot be accessed.
- class fields can only be accessed via virtual getter and setter methods.
Function Overloading
C++ and D follow different rules for function overloading. D source code, even when calling extern (C++) functions, will still follow D overloading rules.
Storage Allocation
C++ code explicitly manages memory with calls to ::operator new() and ::operator delete(). D allocates memory using the D garbage collector, so no explicit delete's are necessary. D's new and delete are not compatible with C++'s ::operator new and ::operator delete. Attempting to allocate memory with C++ ::operator new and deallocate it with D's delete, or vice versa, will result in miserable failure.
D can still explicitly allocate memory using std.c.stdlib.malloc() and std.c.stdlib.free(), these are useful for connecting to C++ functions that expect malloc'd buffers, etc.
If pointers to D garbage collector allocated memory are passed to C++ functions, it's critical to ensure that that memory will not be collected by the garbage collector before the C++ function is done with it. This is accomplished by:
- Making a copy of the data using std.c.stdlib.malloc() and passing the copy instead.
- Leaving a pointer to it on the stack (as a parameter or automatic variable), as the garbage collector will scan the stack.
- Leaving a pointer to it in the static data segment, as the garbage collector will scan the static data segment.
- Registering the pointer with the garbage collector with the std.gc.addRoot() or std.gc.addRange() calls.
An interior pointer to the allocated memory block is sufficient to let the GC know the object is in use; i.e. it is not necessary to maintain a pointer to the beginning of the allocated memory.
The garbage collector does not scan the stacks of threads not created by the D Thread interface. Nor does it scan the data segments of other DLL's, etc.
Data Type Compatibility
D And C Type Equivalence D type C type void void byte signed char ubyte unsigned char char char (chars are unsigned in D) wchar wchar_t (when sizeof(wchar_t) is 2) dchar wchar_t (when sizeof(wchar_t) is 4) short short ushort unsigned short int int uint unsigned long long long ulong unsigned long long float float double double real long double ifloat no equivalent idouble no equivalent ireal no equivalent cfloat no equivalent cdouble no equivalent creal no equivalent struct struct union union enum enum class no equivalent type* type * no equivalent type & type[dim] type[dim] type[dim]* type(*)[dim] type[] no equivalent type[type] no equivalent type function(parameters) type(*)(parameters) type delegate(parameters) no equivalentThese equivalents hold for most 32 bit C++ compilers. The C++ standard does not pin down the sizes of the types, so some care is needed.
Structs and Unions
D structs and unions are analogous to C's.
C code often adjusts the alignment and packing of struct members with a command line switch or with various implementation specific #pragma's. D supports explicit alignment attributes that correspond to the C compiler's rules. Check what alignment the C code is using, and explicitly set it for the D struct declaration.
D does not support bit fields. If needed, they can be emulated with shift and mask operations. htod will convert bit fields to inline functions that do the right shift and masks.
Object Construction and Destruction
Similarly to storage allocation and deallocation, objects constructed in D code should be destructed in D, and objects constructed in C++ should be destructed in C++ code.
Special Member Functions
D cannot call C++ special member functions, and vice versa. These include constructors, destructors, conversion operators, operator overloading, and allocators.
Runtime Type Identification
D runtime type identification uses completely different techniques than C++. The two are incompatible.
C++ Class Objects by Value
D can access POD (Plain Old Data) C++ structs, and it can access C++ class virtual functions by reference. It cannot access C++ classes by value.
C++ Templates
D templates have little in common with C++ templates, and it is very unlikely that any sort of reasonable method could be found to express C++ templates in a link-compatible way with D.
This means that the C++ STL, and C++ Boost, likely will never be accessible from D.
Exception Handling
D and C++ exception handling are completely different. Throwing exceptions across the boundaries between D and C++ code will likely not work.
Future Developments
How the upcoming C++0x standard will affect this is not known.
Over time, more aspects of the C++ ABI may be accessible directly from D.
Portability Guide
It's good software engineering practice to minimize gratuitous portability problems in the code. Techniques to minimize potential portability problems are:
- The integral and floating type sizes should be considered as minimums. Algorithms should be designed to continue to work properly if the type size increases.
- Floating point computations can be carried out at a higher precision than the size of the floating point variable can hold. Floating point algorithms should continue to work properly if precision is arbitrarily increased.
- Avoid depending on the order of side effects in a computation that may get reordered by the compiler. For example:
a + b + ccan be evaluated as (a + b) + c, a + (b + c), (a + c) + b, (c + b) + a, etc. Parentheses control operator precedence, parentheses do not control order of evaluation.
Function parameters can be evaluated either left to right or right to left, depending on the particular calling conventions used.
If the operands of an associative operator + or * are floating point values, the expression is not reordered.
- Avoid dependence on byte order; i.e. whether the CPU is big-endian or little-endian.
- Avoid dependence on the size of a pointer or reference being the same size as a particular integral type.
- If size dependencies are inevitable, put an assert in the code to verify it:
assert(int.sizeof == (int*).sizeof);32 to 64 Bit Portability
64 bit processors and operating systems are here. With that in mind:
- Integral types will remain the same sizes between 32 and 64 bit code.
- Pointers and object references will increase in size from 4 bytes to 8 bytes going from 32 to 64 bit code.
- Use size_t as an alias for an unsigned integral type that can span the address space. Array indices should be of type size_t.
- Use ptrdiff_t as an alias for a signed integral type that can span the address space. A type representing the difference between two pointers should be of type ptrdiff_t.
- The .length, .size, .sizeof, .offsetof and .alignof properties will be of type size_t.
Endianness
Endianness refers to the order in which multibyte types are stored. The two main orders are big endian and little endian. The compiler predefines the version identifier BigEndian or LittleEndian depending on the order of the target system. The x86 systems are all little endian.
The times when endianness matters are:
- When reading data from an external source (like a file) written in a different endian format.
- When reading or writing individual bytes of a multibyte type like longs or doubles.
OS Specific Code
System specific code is handled by isolating the differences into separate modules. At compile time, the correct system specific module is imported.
Minor differences can be handled by constant defined in a system specific import, and then using that constant in an IfStatement or StaticIfStatement.
Embedding D in HTML
The D compiler is designed to be able to extract and compile D code embedded within HTML files. This capability means that D code can be written to be displayed within a browser utilizing the full formatting and display capability of HTML.For example, it is possible to make all uses of a class name actually be hyperlinks to where the class is defined. There's nothing new to learn for the person browsing the code, he just uses the normal features of an HTML browser. Strings can be displayed in green, comments in red, and keywords in boldface, for one possibility. It is even possible to embed pictures in the code, as normal HTML image tags.
Embedding D in HTML makes it possible to put the documentation for code and the code itself all together in one file. It is no longer necessary to relegate documentation in comments, to be extracted later by a tech writer. The code and the documentation for it can be maintained simultaneously, with no duplication of effort.
How it works is straightforward. If the source file to the compiler ends in .htm or .html, the code is assumed to be embedded in HTML. The source is then preprocessed by stripping all text outside of <code> and </code> tags. Then, all other HTML tags are stripped, and embedded character encodings are converted to ASCII. The processing does not attempt to diagnose errors in the HTML itself. All newlines in the original HTML remain in their corresponding positions in the preprocessed text, so the debug line numbers remain consistent. The resulting text is then fed to the D compiler.
Here's an example of the D program "hello world" embedded in this very HTML file. This file can be compiled and run.
import std.stdio;
int main()
{
writefln("hello world");
return 0;
}
Named Character Entities
These are the character entity names supported by D.
Note: Not all will display properly in the Symbol column in all browsers.
Named Character Entities Name Value Symbol quot 34 " amp 38 & lt 60 < gt 62 > OElig 338 Œ oelig 339 œ Scaron 352 Š scaron 353 š Yuml 376 Ÿ circ 710 ˆ tilde 732 ˜ ensp 8194 emsp 8195 thinsp 8201 zwnj 8204 zwj 8205 lrm 8206 rlm 8207 ndash 8211 – mdash 8212 — lsquo 8216 ‘ rsquo 8217 ’ sbquo 8218 ‚ ldquo 8220 “ rdquo 8221 ” bdquo 8222 „ dagger 8224 † Dagger 8225 ‡ permil 8240 ‰ lsaquo 8249 ‹ rsaquo 8250 › euro 8364 € Latin-1 (ISO-8859-1) Entities nbsp 160 iexcl 161 ¡ cent 162 ¢ pound 163 £ curren 164 ¤ yen 165 ¥ brvbar 166 ¦ sect 167 § uml 168 ¨ copy 169 © ordf 170 ª laquo 171 « not 172 ¬ shy 173 reg 174 ® macr 175 ¯ deg 176 ° plusmn 177 ± sup2 178 ² sup3 179 ³ acute 180 ´ micro 181 µ para 182 ¶ middot 183 · cedil 184 ¸ sup1 185 ¹ ordm 186 º raquo 187 » frac14 188 ¼ frac12 189 ½ frac34 190 ¾ iquest 191 ¿ Agrave 192 À Aacute 193 Á Acirc 194  Atilde 195 à Auml 196 Ä Aring 197 Å AElig 198 Æ Ccedil 199 Ç Egrave 200 È Eacute 201 É Ecirc 202 Ê Euml 203 Ë Igrave 204 Ì Iacute 205 Í Icirc 206 Î Iuml 207 Ï ETH 208 Ð Ntilde 209 Ñ Ograve 210 Ò Oacute 211 Ó Ocirc 212 Ô Otilde 213 Õ Ouml 214 Ö times 215 × Oslash 216 Ø Ugrave 217 Ù Uacute 218 Ú Ucirc 219 Û Uuml 220 Ü Yacute 221 Ý THORN 222 Þ szlig 223 ß agrave 224 à aacute 225 á acirc 226 â atilde 227 ã auml 228 ä aring 229 å aelig 230 æ ccedil 231 ç egrave 232 è eacute 233 é ecirc 234 ê euml 235 ë igrave 236 ì iacute 237 í icirc 238 î iuml 239 ï eth 240 ð ntilde 241 ñ ograve 242 ò oacute 243 ó ocirc 244 ô otilde 245 õ ouml 246 ö divide 247 ÷ oslash 248 ø ugrave 249 ù uacute 250 ú ucirc 251 û uuml 252 ü yacute 253 ý thorn 254 þ yuml 255 ÿ Symbols and Greek letter entities fnof 402 ƒ Alpha 913 Α Beta 914 Β Gamma 915 Γ Delta 916 Δ Epsilon 917 Ε Zeta 918 Ζ Eta 919 Η Theta 920 Θ Iota 921 Ι Kappa 922 Κ Lambda 923 Λ Mu 924 Μ Nu 925 Ν Xi 926 Ξ Omicron 927 Ο Pi 928 Π Rho 929 Ρ Sigma 931 Σ Tau 932 Τ Upsilon 933 Υ Phi 934 Φ Chi 935 Χ Psi 936 Ψ Omega 937 Ω alpha 945 α beta 946 β gamma 947 γ delta 948 δ epsilon 949 ε zeta 950 ζ eta 951 η theta 952 θ iota 953 ι kappa 954 κ lambda 955 λ mu 956 μ nu 957 ν xi 958 ξ omicron 959 ο pi 960 π rho 961 ρ sigmaf 962 ς sigma 963 σ tau 964 τ upsilon 965 υ phi 966 φ chi 967 χ psi 968 ψ omega 969 ω thetasym 977 ϑ upsih 978 ϒ piv 982 ϖ bull 8226 • hellip 8230 … prime 8242 ′ Prime 8243 ″ oline 8254 ‾ frasl 8260 ⁄ weierp 8472 ℘ image 8465 ℑ real 8476 ℜ trade 8482 ™ alefsym 8501 ℵ larr 8592 ← uarr 8593 ↑ rarr 8594 → darr 8595 ↓ harr 8596 ↔ crarr 8629 ↵ lArr 8656 ⇐ uArr 8657 ⇑ rArr 8658 ⇒ dArr 8659 ⇓ hArr 8660 ⇔ forall 8704 ∀ part 8706 ∂ exist 8707 ∃ empty 8709 ∅ nabla 8711 ∇ isin 8712 ∈ notin 8713 ∉ ni 8715 ∋ prod 8719 ∏ sum 8721 ∑ minus 8722 − lowast 8727 ∗ radic 8730 √ prop 8733 ∝ infin 8734 ∞ ang 8736 ∠ and 8743 ∧ or 8744 ∨ cap 8745 ∩ cup 8746 ∪ int 8747 ∫ there4 8756 ∴ sim 8764 ∼ cong 8773 ≅ asymp 8776 ≈ ne 8800 ≠ equiv 8801 ≡ le 8804 ≤ ge 8805 ≥ sub 8834 ⊂ sup 8835 ⊃ nsub 8836 ⊄ sube 8838 ⊆ supe 8839 ⊇ oplus 8853 ⊕ otimes 8855 ⊗ perp 8869 ⊥ sdot 8901 ⋅ lceil 8968 ⌈ rceil 8969 ⌉ lfloor 8970 ⌊ rfloor 8971 ⌋ lang 9001 〈 rang 9002 〉 loz 9674 ◊ spades 9824 ♠ clubs 9827 ♣ hearts 9829 ♥ diams 9830 ♦
Memory Safety
Memory Safety for a program is defined as it being impossible for the program to corrupt memory. Therefore, the Safe D consists only of programming language features that are guaranteed to never result in memory corruption.
Safe D is enabled on a per-module basis by compiling with the -safe compiler switch.
Proscribed Forms
- Inline assembler.
- Casting away const or immutable attributes.
- Casting away shared attributes.
- Casting from one pointer type to another pointer type, except for:
- casting to void* is allowed
- casting from a pointer to an arithmetic type to a pointer to another arithmetic type of the same or smaller size is allowed
- Casting from a non-pointer type to a pointer type.
A safe module can import and use the public interface of a system module.
Limitations
Safe D does not imply that code is portable, uses only sound programming practices, is free of byte order dependencies, or other bugs. It is focussed only on eliminating memory corruption possibilities.
Application Binary Interface
A D implementation that conforms to the D ABI (Application Binary Interface) will be able to generate libraries, DLL's, etc., that can interoperate with D binaries built by other implementations.
C ABI
The C ABI referred to in this specification means the C Application Binary Interface of the target system. C and D code should be freely linkable together, in particular, D code shall have access to the entire C ABI runtime library.
Endianness
The endianness (byte order) of the layout of the data will conform to the endianness of the target machine. The Intel x86 CPUs are little endian meaning that the value 0x0A0B0C0D is stored in memory as: 0D 0C 0B 0A.
Basic Types
bool 8 bit byte with the values 0 for false and 1 for true byte 8 bit signed value ubyte 8 bit unsigned value short 16 bit signed value ushort 16 bit unsigned value int 32 bit signed value uint 32 bit unsigned value long 64 bit signed value ulong 64 bit unsigned value cent 128 bit signed value ucent 128 bit unsigned value float 32 bit IEEE 754 floating point value double 64 bit IEEE 754 floating point value real implementation defined floating point value, for x86 it is 80 bit IEEE 754 extended realDelegates
Delegates are fat pointers with two parts:
Delegate Layout offset property contents 0 .ptr context pointer ptrsize .funcptr pointer to functionThe context pointer can be a class this reference, a struct this pointer, a pointer to a closure (nested functions) or a pointer to an enclosing function's stack frame (nested functions).
Structs
Conforms to the target's C ABI struct layout.
Classes
An object consists of:
Class Object Layout size property contents ptrsize .__vptr pointer to vtable ptrsize .__monitor monitor ... ... super's non-static fields and super's interface vptrs, from least to most derived ... named fields non-static fields ptrsize... vptr's for any interfaces implemented by this class in left to right, most to least derived, orderThe vtable consists of:
Virtual Function Pointer Table Layout size contents ptrsize pointer to instance of TypeInfo ptrsize... pointers to virtual member functionsCasting a class object to an interface consists of adding the offset of the interface's corresponding vptr to the address of the base of the object. Casting an interface ptr back to the class type it came from involves getting the correct offset to subtract from it from the object.Interface entry at vtbl[0]. Adjustor thunks are created and pointers to them stored in the method entries in the vtbl[] in order to set the this pointer to the start of the object instance corresponding to the implementing method.
An adjustor thunk looks like:
ADD EAX,offset
JMP methodThe leftmost side of the inheritance graph of the interfaces all share their vptrs, this is the single inheritance model. Every time the inheritance graph forks (for multiple inheritance) a new vptr is created and stored in the class' instance. Every time a virtual method is overridden, a new vtbl[] must be created with the updated method pointers in it.
The class definition:
class XXXX {
....
};Generates the following:
- An instance of Class called ClassXXXX.
- A type called StaticClassXXXX which defines all the static members.
- An instance of StaticClassXXXX called StaticXXXX for the static members.
Interfaces
An interface is a pointer to a pointer to a vtbl[]. The vtbl[0] entry is a pointer to the corresponding instance of the object.Interface class. The rest of the vtbl[1..$] entries are pointers to the virtual functions implemented by that interface, in the order that they were declared.
A COM interface differs from a regular interface in that there is no object.Interface entry in vtbl[0]; the entries vtbl[0..$] are all the virtual function pointers, in the order that they were declared. This matches the COM object layout used by Windows.
A C++ interface differs from a regular interface in that it matches the layout of a C++ class using single inheritance on the target machine.
Arrays
A dynamic array consists of:
Dynamic Array Layout offset property contents 0 .length array dimension size_t .ptr pointer to array dataA dynamic array is declared as:
type[] array;whereas a static array is declared as:
type[dimension] array;Thus, a static array always has the dimension statically available as part of the type, and so it is implemented like in C. Static array's and Dynamic arrays can be easily converted back and forth to each other.
Associative Arrays
Associative arrays consist of a pointer to an opaque, implementation defined type. The current implementation is contained in and defined by rt/aaA.d.
Reference Types
D has reference types, but they are implicit. For example, classes are always referred to by reference; this means that class instances can never reside on the stack or be passed as function parameters.
When passing a static array to a function, the result, although declared as a static array, will actually be a reference to a static array. For example:
int[3] abc;Passing abc to functions results in these implicit conversions:
void func(int[3] array); // actually <reference to><array[3] of><int>
void func(int* p); // abc is converted to a pointer
// to the first element
void func(int[] array); // abc is converted to a dynamic arrayName Mangling
D accomplishes typesafe linking by mangling a D identifier to include scope and type information.
MangledName:
_D QualifiedName Type
_D QualifiedName M Type
QualifiedName:
SymbolName
SymbolName QualifiedName
SymbolName:
LName
TemplateInstanceNameThe M means that the symbol is a function that requires a this pointer.
Template Instance Names have the types and values of its parameters encoded into it:
TemplateInstanceName:
__T LName TemplateArgs Z
TemplateArgs:
TemplateArg
TemplateArg TemplateArgs
TemplateArg:
T Type
V Type Value
S LName
Value:
n
Number
i Number
N Number
e HexFloat
c HexFloat c HexFloat
A Number Value...
HexFloat:
NAN
INF
NINF
N HexDigits P Exponent
HexDigits P Exponent
Exponent:
N Number
Number
HexDigits:
HexDigit
HexDigit HexDigits
HexDigit:
Digit
A
B
C
D
E
F
- n
is for null arguments.- Number
is for positive numeric literals (including character literals).- N Number
is for negative numeric literals.- e HexFloat
is for real and imaginary floating point literals.- c HexFloat c HexFloat
is for complex floating point literals.- Width Number _ HexDigits
Width is whether the characters are 1 byte (a), 2 bytes (w) or 4 bytes (d) in size. Number is the number of characters in the string. The HexDigits are the hex data for the string.- A Number Value...
An array literal. Value is repeated Number times.Name:
Namestart
Namestart Namechars
Namestart:
_
Alpha
Namechar:
Namestart
Digit
Namechars:
Namechar
Namechar NamecharsA Name is a standard D identifier.
LName:
Number Name
Number:
Digit
Digit Number
Digit:
0
1
2
3
4
5
6
7
8
9An LName is a name preceded by a Number giving the number of characters in the Name.
Type Mangling
Types are mangled using a simple linear scheme:
Type:
Shared
Const
Immutable
Wild
TypeArray
TypeNewArray
TypeStaticArray
TypeAssocArray
TypePointer
TypeFunction
TypeIdent
TypeClass
TypeStruct
TypeEnum
TypeTypedef
TypeDelegate
TypeNone
TypeVoid
TypeByte
TypeUbyte
TypeShort
TypeUshort
TypeInt
TypeUint
TypeLong
TypeUlong
TypeFloat
TypeDouble
TypeReal
TypeIfloat
TypeIdouble
TypeIreal
TypeCfloat
TypeCdouble
TypeCreal
TypeBool
TypeChar
TypeWchar
TypeDchar
TypeTuple
Shared:
O Type
Const:
x Type
Immutable:
y Type
Wild:
Ng Type
TypeArray:
A Type
TypeNewArray:
Ne Type
TypeStaticArray:
G Number Type
TypeAssocArray:
H Type Type
TypePointer:
P Type
TypeFunction:
CallConvention FuncAttrs Arguments ArgClose Type
CallConvention:
F // D
U // C
W // Windows
V // Pascal
R // C++
FuncAttrs:
FuncAttr
FuncAttr FuncAttrs
FuncAttr:
empty
FuncAttrPure
FuncAttrNothrow
FuncAttrProperty
FuncAttrRef
FuncAttrTrusted
FuncAttrSafe
FuncAttrPure:
Na
FuncAttrNothrow:
Nb
FuncAttrRef:
Nc
FuncAttrProperty:
Nd
FuncAttrTrusted:
Ne
FuncAttrSafe:
Nf
Arguments:
Argument
Argument Arguments
Argument:
Argument2
M Argument2 // scope
Argument2:
Type
J Type // out
K Type // ref
L Type // lazy
ArgClose
X // variadic T t,...) style
Y // variadic T t...) style
Z // not variadic
TypeIdent:
I LName
TypeClass:
C LName
TypeStruct:
S LName
TypeEnum:
E LName
TypeTypedef:
T LName
TypeDelegate:
D TypeFunction
TypeNone:
n
TypeVoid:
v
TypeByte:
g
TypeUbyte:
h
TypeShort:
s
TypeUshort:
t
TypeInt:
i
TypeUint:
k
TypeLong:
l
TypeUlong:
m
TypeFloat:
f
TypeDouble:
d
TypeReal:
e
TypeIfloat:
o
TypeIdouble:
p
TypeIreal:
j
TypeCfloat:
q
TypeCdouble:
r
TypeCreal:
c
TypeBool:
b
TypeChar:
a
TypeWchar:
u
TypeDchar:
w
TypeTuple:
B Number ArgumentsFunction Calling Conventions
The extern (C) calling convention matches the C calling convention used by the supported C compiler on the host system. The extern (D) calling convention for x86 is described here.
Register Conventions
- EAX, ECX, EDX are scratch registers and can be destroyed by a function.
- EBX, ESI, EDI, EBP must be preserved across function calls.
- EFLAGS is assumed destroyed across function calls, except for the direction flag which must be forward.
- The FPU stack must be empty when calling a function.
- The FPU control word must be preserved across function calls.
- Floating point return values are returned on the FPU stack. These must be cleaned off by the caller, even if they are not used.
Return Value
- The types bool, byte, ubyte, short, ushort, int, uint, pointer, Object, and interfaces are returned in EAX.
- long and ulong are returned in EDX,EAX, where EDX gets the most significant half.
- float, double, real, ifloat, idouble, ireal are returned in ST0.
- cfloat, cdouble, creal are returned in ST1,ST0 where ST1 is the real part and ST0 is the imaginary part.
- Dynamic arrays are returned with the pointer in EDX and the length in EAX.
- Associative arrays are returned in EAX with garbage returned in EDX. The EDX value will probably be removed in the future; it's there for backwards compatibility with an earlier implementation of AA's.
- References are returned as pointers in EAX.
- Delegates are returned with the pointer to the function in EDX and the context pointer in EAX.
- 1, 2 and 4 byte structs are returned in EAX.
- 8 byte structs are returned in EDX,EAX, where EDX gets the most significant half.
- For other struct sizes, the return value is stored through a hidden pointer passed as an argument to the function.
- Constructors return the this pointer in EAX.
Parameters
The parameters to the non-variadic function:
foo(a1, a2, ..., an);are passed as follows:
a1 a2 ... an hidden thiswhere hidden is present if needed to return a struct value, and this is present if needed as the this pointer for a member function or the context pointer for a nested function.
The last parameter is passed in EAX rather than being pushed on the stack if the following conditions are met:
- It fits in EAX.
- It is not a 3 byte struct.
- It is not a floating point type.
Parameters are always pushed as multiples of 4 bytes, rounding upwards, so the stack is always aligned on 4 byte boundaries. They are pushed most significant first. out and ref are passed as pointers. Static arrays are passed as pointers to their first element. On Windows, a real is pushed as a 10 byte quantity, a creal is pushed as a 20 byte quantity. On Linux, a real is pushed as a 12 byte quantity, a creal is pushed as two 12 byte quantities. The extra two bytes of pad occupy the ‘most significant’ position.
The callee cleans the stack.
The parameters to the variadic function:
void foo(int p1, int p2, int[] p3...)
foo(a1, a2, ..., an);are passed as follows:
p1 p2 a3 hidden thisThe variadic part is converted to a dynamic array and the rest is the same as for non-variadic functions.
The parameters to the variadic function:
void foo(int p1, int p2, ...)
foo(a1, a2, a3, ..., an);are passed as follows:
an ... a3 a2 a1 _arguments hidden thisThe caller is expected to clean the stack. _argptr is not passed, it is computed by the callee.
Function Attributes
- Na
pure- Nb
nothrowException Handling
Windows
Conforms to the Microsoft Windows Structured Exception Handling conventions.
Linux and OSX
Uses static address range/handler tables. It is not compatible with the ELF exception handling tables. The stack is walked assuming it uses the EBP stack frame convention. The EBP convention must be used for every function that has an associated EH table.
For each function that has exception handlers, an EH table entry is generated.
EH Table Entry field description void* pointer to start of function DHandlerTable* pointer to corresponding EH data uint size in bytes of the function
The EH table entries are placed into the following special segments, which are concatenated by the linker.
EH Table Segment Operating System Segment Name Windows FI Linux .deh_eh OSX __deh_eh, __DATA
The rest of the EH data can be placed anywhere, it is immutable.
DHandlerTable field description void* pointer to start of function uint offset of ESP from EBP uint offset from start of function to return code uint number of entries in DHandlerInfo[] DHandlerInfo[] array of handler information
DHandlerInfo field description uint offset from function address to start of guarded section uint offset of end of guarded section int previous table index uint if != 0 offset to DCatchInfo data from start of table void* if not null, pointer to finally code to execute
DCatchInfo field description uint number of entries in DCatchBlock[] DCatchBlock[] array of catch information
DCatchBlock field description ClassInfo catch type uint offset from EBP to catch variable void* catch handler codeGarbage Collection
The interface to this is found in phobos/internal/gc.
Runtime Helper Functions
These are found in phobos/internal.
Module Initialization and Termination
All the static constructors for a module are aggregated into a single function, and a pointer to that function is inserted into the ctor member of the ModuleInfo instance for that module.
All the static denstructors for a module are aggregated into a single function, and a pointer to that function is inserted into the dtor member of the ModuleInfo instance for that module.
Unit Testing
All the unit tests for a module are aggregated into a single function, and a pointer to that function is inserted into the unitTest member of the ModuleInfo instance for that module.
Symbolic Debugging
D has types that are not represented in existing C or C++ debuggers. These are dynamic arrays, associative arrays, and delegates. Representing these types as structs causes problems because function calling conventions for structs are often different than that for these types, which causes C/C++ debuggers to misrepresent things. For these debuggers, they are represented as a C type which does match the calling conventions for the type. The dmd compiler will generate only C symbolic type info with the -gc compiler switch.
Types for C Debuggers D type C representation dynamic array unsigned long long associative array void* delegate long long dchar unsigned longFor debuggers that can be modified to accept new types, the following extensions help them fully support the types.
Codeview Debugger Extensions
The D dchar type is represented by the special primitive type 0x78.
D makes use of the Codeview OEM generic type record indicated by LF_OEM (0x0015). The format is:
Codeview OEM Extensions for D field size 2 2 2 2 2 2 D Type Leaf Index OEM Identifier recOEM num indices type index type index dynamic array LF_OEM OEM 1 2 @index @element associative array LF_OEM OEM 2 2 @key @element delegate LF_OEM OEM 3 2 @this @function
OEM 0x42 index type index of array index key type index of key element type index of array element this type index of context pointer function type index of functionThese extensions can be pretty-printed by obj2asm.
The Ddbg debugger supports them.
Dwarf Debugger Extensions
The following leaf types are added:
Dwarf Extensions for D D type Identifier Value Format dynamic array DW_TAG_darray_type 0x41 DW_AT_type is element type associative array DW_TAG_aarray_type 0x42 DW_AT_type, is element type, DW_AT_containing_type key type delegate DW_TAG_delegate_type 0x43 DW_AT_type, is function type, DW_AT_containing_type is ‘this’ typeThese extensions can be pretty-printed by dumpobj.
The ZeroBUGS debugger supports them.