
Grafting Functional Support on
Top of an Imperative Language
How D 2.0 implements immutability and

functional purity

Andrei Alexandrescu

Grafting Functional Support on Top of an Imperative Language – p. 1

Overview of D 2.0

Systems-level programming language

Memory model similar to C (pointers!)

As convenient as a scripting language

Offers a well-defined machine-checkable
subset that is memory-safe

Powerful generics

Today: D 2.0 offers a pure functional subset

Grafting Functional Support on Top of an Imperative Language – p. 2

Why Functional Programming (FP)?

Increased modularity
A part of a program cannot mess another

Easy debugging
The call stack contains all context!

Safe Composition

Lazy evaluation offers iterators that never
invalidate

Automatic concurrency
Immutable sharing is never contentious

Grafting Functional Support on Top of an Imperative Language – p. 3

Why Functional Programming (FP)?

Increased modularity
A part of a program cannot mess another

Easy debugging
The call stack contains all context!

Safe Composition

Lazy evaluation offers iterators that never
invalidate

Automatic concurrency
Immutable sharing is never contentious

Grafting Functional Support on Top of an Imperative Language – p. 3

Why is FP Difficult?

The three “no”s of Functional Programming:

No mutable state

No side effects

No flow of control

Grafting Functional Support on Top of an Imperative Language – p. 4

Why Imperative Programming?

State makes things easy in many applications
Databases, persistence. . .

Fact: many algorithms are specified in terms
of mutable state

Side effects are useful
Input/output, files, networking

I know FP has solutions to all of the above

Just saying that Some Bad People claim
mutable state is easier and simpler for certain
things

Grafting Functional Support on Top of an Imperative Language – p. 5

Mixing the Two

Ideal language—allow:
FP-style programming in parts of a
program best suited for FP
Imperative programming for the rest

Programmer controls the ratio

Language statically rules out nonsensical or
dangerous mixes of the two styles

The D 2.0 language implements such a mix

Grafting Functional Support on Top of an Imperative Language – p. 6

Challenges in Mixing FP and !FP

How to ensure that the procedural part does
not modify the data of the functional part?

Complete isolation is not the answer!
We want the two realms to communicate
complex structures to each other

It’s not a simple matter of copying!
Indirection, aliasing mess things up

Grafting Functional Support on Top of an Imperative Language – p. 7

Challenges in Mixing FP and !FP (II)

How to ensure that an FP function never calls
a !FP function?

If it could, FP functions would have side
effects!

How to ensure that a !FP thread doesn’t
mess with the state of an FP call?

How to typecheck FP functions?
What are the minimum applicable
restrictions?

Grafting Functional Support on Top of an Imperative Language – p. 8

Immutable State

Grafting Functional Support on Top of an Imperative Language – p. 9

A C++-like const?

Here’s an idea:
Use the const qualifier for all FP data
Selectively use non-const data otherwise
The const qualifier is passed along with
the type, so no risk of “forgetting” it
const data cannot be assigned

Problem solved!

Grafting Functional Support on Top of an Imperative Language – p. 10

A C++-like const?

const won’t work because:
It is shallow
Protects only the direct fields
Indirectly-accessed data remains mutable

It suffers from aliasing with non-const data
There may be mutable pointers and
references aliasing with const pointers
and references
That happens even if the shallow-ness
were solved!

Grafting Functional Support on Top of an Imperative Language – p. 11

C++ const is shallow

struct Node { int value; Node* next; ... }

const Node* n1 = new Node;

Node* n2 = n1.next; // fine

We want to enforce that anything reachable
from a const Node is also const

Otherwise a FP function cannot accept data
in confidence that it can’t be changed

Grafting Functional Support on Top of an Imperative Language – p. 12

C++ const is shallow

Transitivity via const functions:

class Node {

Node* next_;

public:

Node* next() { return next_; }

const Node* next() const

{ return next_; }

}

Hand-written contracts, not statically checkable

Grafting Functional Support on Top of an Imperative Language – p. 13

Defining a transitive const

Type constructor, notation: invariant(T)

Rule 0: Can’t assign to invariant(T)

Rule 1: if T.field has type U, then
invariant(T).field has type
invariant(U)

Rule 2: invariant(invariant(T)) ≡
invariant(T)

Rule 3: T implicitly converts to and from
invariant(T) iff T refers no mutable
memory

Grafting Functional Support on Top of an Imperative Language – p. 14

Example

struct Node { int value; Node* next; ... }

invariant(Node)* n1 = new invariant(Node);

Node* n2 = n1.next; // error!

invariant(Node)* n3 = n1.next; // fine

invariant(int) x = n1.value; // fine

int y = n1.value; // fine because

// int has no references

Grafting Functional Support on Top of an Imperative Language – p. 15

Expressiveness Problem

void print(invariant(Node)* n);

Node* n = new Node;

print(n); // error!

invariant is too strict

How to define a function that can print
invariant or mutable nodes?

Must either duplicate the body of print or
rely on a cast

Grafting Functional Support on Top of an Imperative Language – p. 16

Defining const as the intermediary

Type constructor, notation: const(T)

Rule 0: Can’t assign to const(T)

Rule 1: if T.field has type U, then
const(T).field has type const(U)

Rule 2: const(const(T)) ≡ const(T)

Rule 3: T and invariant(T) both implicitly
convert to const(T)

Grafting Functional Support on Top of an Imperative Language – p. 17

Defining const as the intermediary

Type constructor, notation: const(T)

Rule 0: Can’t assign to const(T)

Rule 1: if T.field has type U, then
const(T).field has type const(U)

Rule 2: const(const(T)) ≡ const(T)

Rule 3: T and invariant(T) both implicitly
convert to const(T)

Grafting Functional Support on Top of an Imperative Language – p. 17

Folding Rules

Problem: weird types may appear
const(invariant(const(...T...)))

Define rules for folding combinations:

invariant(const(T)) ≡ invariant(T)

const(invariant(T)) ≡ invariant(T)

Grafting Functional Support on Top of an Imperative Language – p. 18

Intuition

const(T) x: I can’t modify x or anything
reachable from it

invariant(T) x: Nobody can modify x or
anything reachable from it

invariant is great for FP code portions

Unqualified is great for !FP code portions

const is great for factoring code that accepts
data from both worlds!

Grafting Functional Support on Top of an Imperative Language – p. 19

Initializing invariant data

During construction, an object’s fields must
be assignable

Yet they can’t be non-invariant: somebody
may alias the address of a field to a pointer to
mutable data!

Node.this() invariant {

value = 0;

global = &next;

}

Grafting Functional Support on Top of an Imperative Language – p. 20

Different Constructors

Unlike in C++, the invariant and regular
constructor cannot be shared

They typecheck very differently

The regular constructor is allowed to escape
pointers to its members without restriction

Grafting Functional Support on Top of an Imperative Language – p. 21

“Raw” and “Cooked” States

Typechecking is done in two stages

Initially this has type __raw(Node)

__raw is an internal qualifier not accessible
to user code

__raw fields can only be assigned to, that’s it

Once all members have been assigned to, the
compiler switches the object’s type to
invariant(Node), at which point it can be
normally used

Grafting Functional Support on Top of an Imperative Language – p. 22

“Raw” and “Cooked” States

Node.this() invariant {

// start as raw

value = 0;

next = null;

// shazam! object got cooked

// can be passed to functions

print("Done with creating node ", this);

}

Grafting Functional Support on Top of an Imperative Language – p. 23

Important Observation

Can you delete invariant data?

If so, all hell breaks loose

All functional languages rely on garbage
collection

D also offers garbage collection, without
which FP in D would not be possible

Don’t do the crime if you can’t do the time!

Grafting Functional Support on Top of an Imperative Language – p. 24

Qualifier Summary

Transitive qualification is key

Two kinds: invariant and const

invariant: FP data—never, ever changed

const: just a view to possibly mutable data

Both are necessary to factor code working
with FP and !FP

Grafting Functional Support on Top of an Imperative Language – p. 25

Pure Functions

Grafting Functional Support on Top of an Imperative Language – p. 26

Immutable Data Not Enough

int foonctional(invariant(Node) n) {

static int i = 42;

writeln(++i);

return n.value + i;

}

Looks like functional to you?

Signature suggests so!

Grafting Functional Support on Top of an Imperative Language – p. 27

Pure Functions

Need a pure storage class for functions:

int fun(invariant(Node) n) pure {

...

}

Challenge: typecheck the body of fun to
ensure it does not do any impure action

Grafting Functional Support on Top of an Imperative Language – p. 28

Pure Functions, Take 1

Disallow all calls to impure functions

Disallow all access to non-invariant data

By definition of invariant and pure, it is
easy to infer that the result only depends on
the inputs

Grafting Functional Support on Top of an Imperative Language – p. 29

Pure Functions, Take 1

int foonctional(invariant(Node) n) pure {

static int i = 42; // error!

writeln(++i); // error!

return n.value + i; // error!

}

Grafting Functional Support on Top of an Imperative Language – p. 30

Pure Functions, Take 1

int foonctional(invariant(Node) n) pure {

invariant(int) i = 42; // fine

writeln(i); // error!

return n.value + i; // fine

}

Grafting Functional Support on Top of an Imperative Language – p. 31

An Unnecessary Restriction

int fun(invariant(Node) n) pure {

int i = 42; // error?

if (n.value) ++i; // error?

return n.value + i; // error?

}

Key observation: why disallow mutability of
automatic state?

Result is still dependent solely on inputs!

Grafting Functional Support on Top of an Imperative Language – p. 32

Pure Functions, Take 2

Disallow all calls to impure functions

Allow access to invariant data

Allow automatic local mutable state

Disallow all other data access

By definition of invariant and pure, and by
scoping of local state, we can infer that the
result only depends on the inputs

Grafting Functional Support on Top of an Imperative Language – p. 33

Yum

int fun(invariant(Node) n) pure {

int i = 42;

if (n.value) ++i;

int accum = 0;

for (i = 0; i != n.value; ++i) ++accum;

return n.value + i;

}

Got benefits of both FP and !FP worlds in one
place!

Grafting Functional Support on Top of an Imperative Language – p. 34

Conclusions

Invariant and mutable data can be
harmoniously mixed in a unified type
framework

Transitive qualifiers are key

Pure functions can be modularly typechecked

Relaxed immutability inside a pure function
Allow !FP techniques to be used

It all rests on an efficient machine model!

Grafting Functional Support on Top of an Imperative Language – p. 35

	Overview of D 2.0
	Why Functional Programming (FP)?
	Why Functional Programming (FP)?

	Why is FP Difficult?
	Why Imperative Programming?
	Mixing the Two
	Challenges in Mixing FP and !FP
	Challenges in Mixing FP and !FP (II)
	Immutable State
	A C++-like lstinline {const}?
	A C++-like lstinline {const}?
	C++ lstinline {const} is shallow
	C++ lstinline {const} is shallow
	Defining a transitive lstinline {const}
	Example
	Expressiveness Problem
	Defining lstinline {const} as the intermediary
	Defining lstinline {const} as the intermediary

	Folding Rules
	Intuition
	Initializing lstinline {invariant} data
	Different Constructors
	``Raw'' and ``Cooked'' States
	``Raw'' and ``Cooked'' States
	Important Observation
	Qualifier Summary
	Pure Functions
	Immutable Data Not Enough
	Pure Functions
	Pure Functions, Take 1
	Pure Functions, Take 1
	Pure Functions, Take 1
	An Unnecessary Restriction
	Pure Functions, Take 2
	Yum
	Conclusions

